Mechanisms of the North Atlantic internal variability at multidecadal timescale in the CNRM-CM5 model

Yohan Ruprich-Robert and Christophe Cassou

Outline

Study the North Atlantic internal variability with the Pre-industrial control run of CNRM-CM5

1) Characteristics of the CNRM-CM5 AMV

2) Link between AMV and AMOC

3) Mechanism leading to AMV/AMOC variability

4) Importance of the SPG (?)

5) Conclusion

Outline

1) Characteristics of the CNRM-CM5 AMV

2) Link between AMV and AMOC

3) Mechanism leading to AMV/AMOC variability

4) Importance of the SPG

5) Conclusion

Outline

1) Characteristics of the CNRM-CM5 AMV

2) Link between AMV and AMOC

3) Mechanism leading to AMV/AMOC variability

4) Importance of the SPG

5) Conclusion

AMV / AMOC links

AMV / AMOC links

AMV / AMOC links

Outline

1) Characteristics of the CNRM-CM5 AMV

2) Link between AMV and AMOC

3) Mechanism leading to AMV/AMOC variability

4) Importance of the SPG

5) Conclusion

The atmosphere and the AMOC variability

The atmosphere and the AMOC variability

Msadek and Frankignoul 2009 Barrier et al. 2013

Msadek and Frankignoul 2009 Barrier et al. 2013

Regression of salt@0-200m on AMOCy

Current southward propagation ~10yr

Current southward propagation ~10yr

Current southward propagation ~10yr

Current southward propagation ~10yr

AMOC decline :

- Heat SPG increase (advection + surface fluxes)
- Advection of Arctic freshwater
- Advection of tropical freshwater

More details in Ruprich-Robert and Cassou 2013 submitted to Clim Dyn

AMOC variability summary

In CNRM-CM5, the AMOC internal variability is a multidecadal non oscillating mode (taking ~40 years for build-up and ~20 years to be damped)

- → Main precursor of the internal AMV (leading by ~5 years, correlation of 0.91)
- \rightarrow initiated by the integration of atmospheric white noise forcing : the winter EAP

(Hakkinen et al. 2011)

- \rightarrow timescale controlled by oceanic processes
- \rightarrow leads to weak atmospheric response (summer EAP, winter NAO, summer NAO)
- → AMOC variability mainly impacted by the SPG density fluctuations
- \rightarrow AMOC conditional predictability mainly comes from SPG density

AMOC variability summary

In CNRM-CM5, the AMOC internal variability is a multidecadal non oscillating mode (taking ~40 years for build-up and ~20 years to be damped)

- → Main precursor of the internal AMV (leading by ~5 years, correlation of 0.91)
- \rightarrow initiated by the integration of atmospheric white noise forcing : the winter EAP

(Hakkinen et al. 2011)

- \rightarrow timescale controlled by oceanic processes
- \rightarrow leads to weak atmospheric response (summer EAP, winter NAO, summer NAO)
- → AMOC variability mainly impacted by the SPG density fluctuations
- → AMOC conditional predictability mainly comes from **SPG density**

Many thanks for your attention

Outline

1) Characteristics of the CNRM-CM5 AMV

2) Link between AMV and AMOC

3) Mechanism leading to AMV/AMOC variability

4) Importance of the SPG

5) Conclusion

AMOC variability summary

In CNRM-CM5, the AMOC internal variability is a multidecadal non oscillating mode (taking ~40 years for build-up and ~20 years to be damped)

- → Main precursor of the internal AMV (leading by ~5 years, correlation of 0.91)
- \rightarrow initiated by the integration of atmospheric white noise forcing : the winter EAP

(Hakkinen et al. 2011)

- \rightarrow timescale controlled by oceanic processes
- \rightarrow leads to weak atmospheric response (summer EAP, winter NAO, summer NAO)
- → AMOC variability mainly impacted by the SPG density fluctuations
- \rightarrow AMOC conditional predictability mainly comes from SPG density

AMOC variability summary

In CNRM-CM5, the AMOC internal variability is a multidecadal non oscillating mode (taking ~40 years for build-up and ~20 years to be damped)

- → Main precursor of the internal AMV (leading by ~5 years, correlation of 0.91)
- \rightarrow initiated by the integration of atmospheric white noise forcing : the winter EAP

(Hakkinen et al. 2011)

- \rightarrow timescale controlled by oceanic processes
- \rightarrow leads to weak atmospheric response (summer EAP, winter NAO, summer NAO)
- → AMOC variability mainly impacted by the SPG density fluctuations
- → AMOC conditional predictability mainly comes from **SPG density**

Many thanks for your attention