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Qualifier 1

I The physics of ice-ocean interaction is not location dependent
I BUT: forcings can be
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Qualifier 2

I Tidewater glaciers are special, because they have a non-zero ice flux
at the terminus

I This allows for dynamic thinning, etc
I But lake-calving glaciers share that
I With the retreat of an ice sheet it is well possible that tidewater

glaciers become less common and lake calving glaciers become more
common!
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Summary

I Tidewater glacier behavior can be asynchronous with climate → large
variability

I Glacier bed topography matters (grounding line instability)
I Oceans matter
I Erosion matters
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The tidewater glacier cycle

I In the advanced stage a
TWG is near zero surface
mass balance

I A small change in climate
can trigger a retreat

I Retreat is unstoppable as
long as the terminus is in
deep water

I Re-advance is governed by
the rate of sediment
deposition, which generates
a shallow water environment
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Southeast Alaska: Asynchronous behavior

Image: Space Shuttle, 1995
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Example, Juneau Icefield: 1950s - 2000

Larsen et al., 2007, JGR
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Disintegration of an icefield: Glacier Bay

I Volume loss since LIA: 3,030
km2

I Global sea level equiv.: 8 mm

Larsen et al., 2005, EPSL
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Coupling of icefield to outlet?

Thinning at Columbia Glacier does currently not spread to upper areas,
despite 20+ years of retreat (McNabb et al., 2012, JGR)
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Take home lessons

I Tidewater glaciers show highly variable behavior and are not always
good indicators of current climate

I Tidewater glaciers can be unstable in both advance and retreat,
particularly when glacier beds have reversed slopes

I Typical retreat patterns combine thinning, retreat, and acceleration
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LeConte Glacier

Ice-ocean interaction 15 / 26



Fjord physical properties

I Fjord is highly stratified
I Temperature forcing is

large: 8◦C
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Simple circulation model

I Heat is supplied by warm and
saline ocean bottom water

I Melting takes place at vertical
ice face

I Circulation is driven by
subglacial discharge (plume
model)

I derived melt rates can be a
significant portion (> 50%) of
the ice flux

Motyka et al., 2003, Ann. Glac.
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Ocean forcing in Gulf of Alaska

I High summer ocean temperatures are common (Columbia, LeConte,
Hubbard, Icy Bay)

I Alaska fjords are sill dominated
I Glacial runoff in Southeast AK is large (both rain and melt)
I This affects fjord water circulation
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Glacier erosion: quick summary

I Glacier advance and retreat is critically dependent on bed geometry
I Tidewater glaciers can erode channels significantly below sea level
I Tidewater glaciers can move significant amounts of sediment
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Example: Taku Glacier

Taku Glacier in 1905, 1920, and two
weeks ago
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Sediment evacuation

Motyka et al., 2006, GRL
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Some implications

I Sediment transport creates and progrades terminal moraines that
protect the glacier from rapid calving

I Glacier erosion creates troughs that are based considerably below sea
level, creating unstable conditions

I Sediment mass balance can be as important for tidewater glacier
behavior as ice mass balance
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So what about Greenland

I Bedrock geometry is important, but lateral fluxes might play a role in
delaying retreat

I Coupling of the ice sheet to changes near the front?
I Oceans: forcings are not as strong, so other effects (tidal, wind)

might play a larger role
I Erosion and sediment deposition: rates are likely slower, nonetheless

important in the long term
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