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Qualifier 2

» Tidewater glaciers are special, because they have a non-zero ice flux
at the terminus

» This allows for dynamic thinning, etc
» But lake-calving glaciers share that

» With the retreat of an ice sheet it is well possible that tidewater
glaciers become less common and lake calving glaciers become more
common!
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Tidewater glacier behavior can be asynchronous with climate — large
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Glacier bed topography matters (grounding line instability)
Oceans matter
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Erosion matters
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The tidewater glacier cycle
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In the advanced stage a
TWoG is near zero surface
mass balance

A small change in climate
can trigger a retreat

Retreat is unstoppable as
long as the terminus is in
deep water

Re-advance is governed by
the rate of sediment
deposition, which generates
a shallow water environment

Austin Post
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Image: Space Shuttle, 1995
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Juneau Icefield
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Disintegration of an icefield: Glacier Bay
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Disintegration of an icefield: Glacier Bay

» Volume loss since LIA: 3,030
km?

> Global sea level equiv.: 8 mm

Larsen et al., 2005, EPSL
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Coupling of icefield to outlet?

Thickness decrease, 1957 - 2007
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Thinning at Columbia Glacier does currently not spread to upper areas,

despite 20+ years of retreat (mcnabb et al, 2012, JGR)
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Take home lessons

» Tidewater glaciers show highly variable behavior and are not always
good indicators of current climate

» Tidewater glaciers can be unstable in both advance and retreat,
particularly when glacier beds have reversed slopes

» Typical retreat patterns combine thinning, retreat, and acceleration
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Fjord physical properties
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Fjord physical properties
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Fjord physical properties

Absolute salinity (g/kg)
28

. » Fjord is highly stratified
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Simple circulation model
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Simple circulation model

Motyka et al., 2003, Ann. Glac.

Heat is supplied by warm and
saline ocean bottom water

Melting takes place at vertical
ice face

Circulation is driven by
subglacial discharge (plume
model)

derived melt rates can be a
significant portion (> 50%) of
the ice flux

|ce-ocean interaction
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Ocean forcing in Gulf of Alaska

» High summer ocean temperatures are common (Columbia, LeConte,
Hubbard, Icy Bay)

Alaska fjords are sill dominated

Glacial runoff in Southeast AK is large (both rain and melt)
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This affects fjord water circulation
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» Glacier advance and retreat is critically dependent on bed geometry
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Glacier erosion: quick summary

» Glacier advance and retreat is critically dependent on bed geometry
» Tidewater glaciers can erode channels significantly below sea level

» Tidewater glaciers can move significant amounts of sediment
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Example: Taku Glacier
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Example: Taku Glacier

Taku Glacier in 1905, 1920, and two
weeks ago
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Sediment evacuation
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Some implications

» Sediment transport creates and progrades terminal moraines that
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Some implications

» Sediment transport creates and progrades terminal moraines that
protect the glacier from rapid calving

» Glacier erosion creates troughs that are based considerably below sea
level, creating unstable conditions

» Sediment mass balance can be as important for tidewater glacier
behavior as ice mass balance
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So what about Greenland

» Bedrock geometry is important, but lateral fluxes might play a role in
delaying retreat

» Coupling of the ice sheet to changes near the front?

» Oceans: forcings are not as strong, so other effects (tidal, wind)
might play a larger role

» Erosion and sediment deposition: rates are likely slower, nonetheless
important in the long term
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