

Lessons learned from Alaskan tidewater glaciers

Martin Truffer

Geophysical Institute University of Alaska Fairbanks

GRISO workshop, June 2013

Tidewater glacier cycle

Ice-ocean interaction

Glacier erosion and sediment transport

Conclusions

Outline

- Tidewater glacier cycle
- Ice-ocean interaction
- Glacier erosion and sediment transport
- Conclusions

The physics of ice-ocean interaction is not location dependent BUT: forcings can be

- > The physics of ice-ocean interaction is not location dependent
- BUT: forcings can be

- Tidewater glaciers are special, because they have a non-zero ice flux at the terminus
- This allows for dynamic thinning, etc
- But lake-calving glaciers share that
- With the retreat of an ice sheet it is well possible that tidewater glaciers become less common and lake calving glaciers become more common!

- Tidewater glaciers are special, because they have a non-zero ice flux at the terminus
- This allows for dynamic thinning, etc
- But lake-calving glaciers share that
- With the retreat of an ice sheet it is well possible that tidewater glaciers become less common and lake calving glaciers become more common!

- Tidewater glaciers are special, because they have a non-zero ice flux at the terminus
- This allows for dynamic thinning, etc
- But lake-calving glaciers share that
- With the retreat of an ice sheet it is well possible that tidewater glaciers become less common and lake calving glaciers become more common!

- Tidewater glaciers are special, because they have a non-zero ice flux at the terminus
- This allows for dynamic thinning, etc
- But lake-calving glaciers share that
- With the retreat of an ice sheet it is well possible that tidewater glaciers become less common and lake calving glaciers become more common!

- \blacktriangleright Tidewater glacier behavior can be asynchronous with climate \rightarrow large variability
- Glacier bed topography matters (grounding line instability)
- Oceans matter
- Erosion matters

- \blacktriangleright Tidewater glacier behavior can be asynchronous with climate \rightarrow large variability
- Glacier bed topography matters (grounding line instability)
- Oceans matter
- Erosion matters

- \blacktriangleright Tidewater glacier behavior can be asynchronous with climate \rightarrow large variability
- Glacier bed topography matters (grounding line instability)
- Oceans matter
- Erosion matters

- \blacktriangleright Tidewater glacier behavior can be asynchronous with climate \rightarrow large variability
- Glacier bed topography matters (grounding line instability)
- Oceans matter
- Erosion matters

Outline

Summary

Tidewater glacier cycle

Ice-ocean interaction

Glacier erosion and sediment transport

Conclusions

- In the advanced stage a TWG is near zero surface mass balance
- A small change in climate can trigger a retreat
- Retreat is unstoppable as long as the terminus is in deep water
- Re-advance is governed by the rate of sediment deposition, which generates a shallow water environment

- In the advanced stage a TWG is near zero surface mass balance
- A small change in climate can trigger a retreat
- Retreat is unstoppable as long as the terminus is in deep water
- Re-advance is governed by the rate of sediment deposition, which generates a shallow water environment

- In the advanced stage a TWG is near zero surface mass balance
- A small change in climate can trigger a retreat
- Retreat is unstoppable as long as the terminus is in deep water
- Re-advance is governed by the rate of sediment deposition, which generates a shallow water environment

- In the advanced stage a TWG is near zero surface mass balance
- A small change in climate can trigger a retreat
- Retreat is unstoppable as long as the terminus is in deep water
- Re-advance is governed by the rate of sediment deposition, which generates a shallow water environment

- In the advanced stage a TWG is near zero surface mass balance
- A small change in climate can trigger a retreat
- Retreat is unstoppable as long as the terminus is in deep water
- Re-advance is governed by the rate of sediment deposition, which generates a shallow water environment

- In the advanced stage a TWG is near zero surface mass balance
- A small change in climate can trigger a retreat
- Retreat is unstoppable as long as the terminus is in deep water
- Re-advance is governed by the rate of sediment deposition, which generates a shallow water environment

- In the advanced stage a TWG is near zero surface mass balance
- A small change in climate can trigger a retreat
- Retreat is unstoppable as long as the terminus is in deep water
- Re-advance is governed by the rate of sediment deposition, which generates a shallow water environment

Southeast Alaska: Asynchronous behavior

Image: Space Shuttle, 1995

Example, Juneau Icefield: 1950s - 2000

Larsen et al., 2007, JGR

- Volume loss since LIA: 3,030 km²
- Global sea level equiv.: 8 mm

Larsen et al., 2005, EPSL

- Volume loss since LIA: 3,030 km²
- Global sea level equiv.: 8 mm

Larsen et al., 2005, EPSL

- Volume loss since LIA: 3,030 km²
- Global sea level equiv.: 8 mm

Larsen et al., 2005, EPSL

- Volume loss since LIA: 3,030 km²
- Global sea level equiv.: 8 mm

Larsen et al., 2005, EPSL

- Volume loss since LIA: 3,030 km²
- Global sea level equiv.: 8 mm

Larsen et al., 2005, EPSL

Coupling of icefield to outlet?

Thinning at Columbia Glacier does currently not spread to upper areas, despite 20+ years of retreat (McNabb et al., 2012, JGR) Tidewater glacier cycle

Take home lessons

- Tidewater glaciers show highly variable behavior and are not always good indicators of current climate
- Tidewater glaciers can be unstable in both advance and retreat, particularly when glacier beds have reversed slopes
- Typical retreat patterns combine thinning, retreat, and acceleration

Take home lessons

- Tidewater glaciers show highly variable behavior and are not always good indicators of current climate
- Tidewater glaciers can be unstable in both advance and retreat, particularly when glacier beds have reversed slopes
- Typical retreat patterns combine thinning, retreat, and acceleration

Take home lessons

- Tidewater glaciers show highly variable behavior and are not always good indicators of current climate
- Tidewater glaciers can be unstable in both advance and retreat, particularly when glacier beds have reversed slopes
- Typical retreat patterns combine thinning, retreat, and acceleration

Outline

Summary

Tidewater glacier cycle

Ice-ocean interaction

Glacier erosion and sediment transport

Conclusions

LeConte Glacier

Fjord physical properties

Fjord is highly stratified Temperature forcing is large: 8°C

Fjord physical properties

Fjord is highly stratified Temperature forcing is large: 8°C

Fjord physical properties

Fjord is highly stratified Temperature forcing is large: 8°C

Fjord physical properties

Fjord is highly stratified

Temperature forcing is large: 8°C

Fjord physical properties

 Fjord is highly stratified
Temperature forcing is large: 8°C

- Heat is supplied by warm and saline ocean bottom water
- Melting takes place at vertical ice face
- Circulation is driven by subglacial discharge (plume model)
- derived melt rates can be a significant portion (> 50%) of the ice flux

- Heat is supplied by warm and saline ocean bottom water
- Melting takes place at vertical ice face
- Circulation is driven by subglacial discharge (plume model)
- derived melt rates can be a significant portion (> 50%) of the ice flux

- Heat is supplied by warm and saline ocean bottom water
- Melting takes place at vertical ice face
- Circulation is driven by subglacial discharge (plume model)
- derived melt rates can be a significant portion (> 50%) of the ice flux

Motyka et al., 2003, Ann. Glac.

Heat is supplied by warm and saline ocean bottom water

- Melting takes place at vertical ice face
- Circulation is driven by subglacial discharge (plume model)
- derived melt rates can be a significant portion (> 50%) of the ice flux

- Heat is supplied by warm and saline ocean bottom water
- Melting takes place at vertical ice face
- Circulation is driven by subglacial discharge (plume model)
- derived melt rates can be a significant portion (> 50%) of the ice flux

- Heat is supplied by warm and saline ocean bottom water
- Melting takes place at vertical ice face
- Circulation is driven by subglacial discharge (plume model)
- derived melt rates can be a significant portion (> 50%) of the ice flux

- Heat is supplied by warm and saline ocean bottom water
- Melting takes place at vertical ice face
- Circulation is driven by subglacial discharge (plume model)
- derived melt rates can be a significant portion (> 50%) of the ice flux

- High summer ocean temperatures are common (Columbia, LeConte, Hubbard, Icy Bay)
- Alaska fjords are sill dominated
- Glacial runoff in Southeast AK is large (both rain and melt)
- This affects fjord water circulation

- High summer ocean temperatures are common (Columbia, LeConte, Hubbard, Icy Bay)
- Alaska fjords are sill dominated
- Glacial runoff in Southeast AK is large (both rain and melt)
- This affects fjord water circulation

- High summer ocean temperatures are common (Columbia, LeConte, Hubbard, Icy Bay)
- Alaska fjords are sill dominated
- Glacial runoff in Southeast AK is large (both rain and melt)
- This affects fjord water circulation

- High summer ocean temperatures are common (Columbia, LeConte, Hubbard, Icy Bay)
- Alaska fjords are sill dominated
- ► Glacial runoff in Southeast AK is large (both rain and melt)
- This affects fjord water circulation

Outline

Summary

Tidewater glacier cycle

Ice-ocean interaction

Glacier erosion and sediment transport

Conclusions

Glacier erosion: quick summary

Glacier advance and retreat is critically dependent on bed geometry

- ▶ Tidewater glaciers can erode channels significantly below sea level
- Tidewater glaciers can move significant amounts of sediment

Glacier erosion: quick summary

- Glacier advance and retreat is critically dependent on bed geometry
- ► Tidewater glaciers can erode channels significantly below sea level
- Tidewater glaciers can move significant amounts of sediment

Glacier erosion: quick summary

- Glacier advance and retreat is critically dependent on bed geometry
- ► Tidewater glaciers can erode channels significantly below sea level
- Tidewater glaciers can move significant amounts of sediment

Example: Taku Glacier

Taku Glacier in 1905, 1920, and two weeks ago

Example: Taku Glacier

Taku Glacier in 1905, 1920, and two weeks ago

Example: Taku Glacier

Taku Glacier in 1905, 1920, and two weeks ago

Sediment evacuation

Motyka et al., 2006, GRL

Some implications

- Sediment transport creates and progrades terminal moraines that protect the glacier from rapid calving
- Glacier erosion creates troughs that are based considerably below sea level, creating unstable conditions
- Sediment mass balance can be as important for tidewater glacier behavior as ice mass balance

Some implications

- Sediment transport creates and progrades terminal moraines that protect the glacier from rapid calving
- Glacier erosion creates troughs that are based considerably below sea level, creating unstable conditions
- Sediment mass balance can be as important for tidewater glacier behavior as ice mass balance

Some implications

- Sediment transport creates and progrades terminal moraines that protect the glacier from rapid calving
- Glacier erosion creates troughs that are based considerably below sea level, creating unstable conditions
- Sediment mass balance can be as important for tidewater glacier behavior as ice mass balance

Outline

Summary

- Tidewater glacier cycle
- **Ice-ocean interaction**
- Glacier erosion and sediment transport

Conclusions

- Bedrock geometry is important, but lateral fluxes might play a role in delaying retreat
- Coupling of the ice sheet to changes near the front?
- Oceans: forcings are not as strong, so other effects (tidal, wind) might play a larger role
- Erosion and sediment deposition: rates are likely slower, nonetheless important in the long term

- Bedrock geometry is important, but lateral fluxes might play a role in delaying retreat
- Coupling of the ice sheet to changes near the front?
- Oceans: forcings are not as strong, so other effects (tidal, wind) might play a larger role
- Erosion and sediment deposition: rates are likely slower, nonetheless important in the long term

- Bedrock geometry is important, but lateral fluxes might play a role in delaying retreat
- Coupling of the ice sheet to changes near the front?
- Oceans: forcings are not as strong, so other effects (tidal, wind) might play a larger role
- Erosion and sediment deposition: rates are likely slower, nonetheless important in the long term

- Bedrock geometry is important, but lateral fluxes might play a role in delaying retreat
- Coupling of the ice sheet to changes near the front?
- Oceans: forcings are not as strong, so other effects (tidal, wind) might play a larger role
- Erosion and sediment deposition: rates are likely slower, nonetheless important in the long term

