

DYNAMO

Augustin Vintzileos

University of Maryland – ESSIC DYNAMO Science Steering Committee

on behalf of

Chidong Zhang

University of Miami

Why subseasonal is important for interannual and beyond time scales....

Forecasting ENSO with the NASA model

(Vintzileos et al., 2005)

Observed subseasonal activity modified the forecast from La Nina to neutral in just one month

Outlook:

What is DYNAMO? - The science questions

Was DYNAMO successful?

The components of DYNAMO:

Radiosondes - Dropsondes

Radars – Buoys

Monitoring/Forecast support

DYNAMO post-field activities

Conceptual Model for MJO initiation:

Pre-onset stage (A): Convectively suppressed; recharging with deepening moist layer, aided by shallow clouds

Onset stage (B): Convectively active, with both shallow and deep (including stratiform) convective clouds; deep moist layer, maintained by low-level moisture supply

Post-onset stage (C): strong surface wind and entrainment cooling; deep convection declining due to low SST

Hypotheses: Three essential factors for MJO initiation

- I. Interaction between convection and its environmental moisture
- II. Distinct roles of different types of convective clouds at each MJO initiation stage
- III. Upper ocean processes and air-sea interaction

Outstanding Science Issues:

- *Cold pools*: their structures, evolution, air-sea interaction,
- <u>Dry-air intrusion</u>: its origins, structure, evolution, dynamics
- *Diurnal cycle*: its role in cloud evolution and air-sea coupling
- <u>Scale interaction</u> between convective, diurnal, 2-4 day, synoptic, MJO, and seasonal variations in convection and the circulation
- Convective organization vs. stochasticity and convective momentum transport: their representation in models
- <u>Ocean dynamics</u>: roles of equatorial waves, near inertial waves, the Wyrtki jets, the thermocline ridge
- <u>Large-scale atmospheric dynamics</u>: roles of vertical wind shear, upstream and extratropical influences, upper-level perturbations, moisture transport and convergence, and the ITCZ
- <u>Up-scaling of the field observations</u>: connections between case observations and statistics, and between local observations and basin scale
- <u>Sources of prediction skill</u> for initiation of the primary vs. successive MJO; <u>necessary vs. sufficient conditions</u> for MJO initiation

DYNAMO was a lucky campaign!

Review of DYNAMO through the RMM index

October to December 2011

January to March 2012

Radiosondes - Dropsondes

DYNAMO/CINDY Atmospheric Sounding Network

DYNAMO/CINDY/AMIE sonde network inventory as of 03/31/12

Total number of soundings: 18,992* + 4,401** = 23,393

* Priority Sounding Site (PSS) sondes: 17,544

Non-PSS sondes: 1448

**Pibals

Total high-resolution soundings: 11,918 (incl. 469 dropsondes)

W-band: 3.3 mm Ka-band: 8.6 mm

X-band: 3 cm C-band: 5 cm S-band: 10 cm

Convective Echo Tops Observed by S-PolKa at Addu Atoll

DYNAMO moorings: From September 18th, 2011 to January 23rd, 2012

From NCEP to DYNAMO to NCEP

CPO funded CPC and ESSIC to provide monitoring and forecast support to DYNAMO

Gottschalck and Vintzileos

Forecast of Anomalous OLR (GFS) for the second DYNAMO MJO event

Verification

140E

Summary of MJO forecast skill for the GFS (blue), GEFS (red), CFS (green) during DYNAMO for RMM1 (continuous) and RMM2 (dashed)

DYNAMO Period 1

DYNAMO Period 2

There is a very important increase in forecast skill when using the coupled ocean – atmosphere model (CFS) between the two DYNAMO periods.

(Vintzileos and Gottschalck)

DYNAMO Post-Field Activities

- (1) Complete quality control and release of field observations for public use (98% completed)
- (2) Test DYNAMO hypotheses and address other science issues;
- (3) Generate DYNAMO legacy data products for the broad user community;
- (4) Expedite transformation from field observations to model improvement and development.

Legacy data products:

- (a) Merged air-sea data at Revelle and along P-3 tracks
- (b) Uncertainty estimates for existing gridded flux products
- (c) Combined cloud population statistics from all radars
- (d) Integrated field observations for the DYNAMO MJO Cases

Outstanding Science Issues:

- *Cold pools*: their structures, evolution, air-sea interaction,
- <u>Dry-air intrusion</u>: its origins, structure, evolution, dynamics
- *Diurnal cycle*: its role in cloud evolution and air-sea coupling
- <u>Scale interaction</u> between convective, diurnal, 2-4 day, synoptic, MJO, and seasonal variations in convection and the circulation
- Convective organization vs. stochasticity and convective momentum transport: their representation in models
- <u>Ocean dynamics</u>: roles of equatorial waves, near inertial waves, the Wyrtki jets, the thermocline ridge
- <u>Large-scale atmospheric dynamics</u>: roles of vertical wind shear, upstream and extratropical influences, upper-level perturbations, moisture transport and convergence, and the ITCZ
- <u>Up-scaling of the field observations</u>: connections between case observations and statistics, and between local observations and basin scale
- <u>Sources of prediction skill</u> for initiation of the primary vs. successive MJO; <u>necessary vs. sufficient conditions</u> for MJO initiation

The CINDY/DYNAMO Field Campaign:

How May Its Data Help the GASS Project on MJO Vertical Heating Profiles?

Discussion Topics:

- 1. What are the primary observed fields that are needed for the GASS MJO model comparison project?
- 2. What are the primary derived field that are needed?
- 3. How should the design of the 2- and 20-day hindcasts be modified to optimize the benefit from the field observations?
- 4. How should cloud permitting models be added to the global model intercomparison project?