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Previous studies have limited to a short
period since the satellite era (1980 onward),
precluding the examination on longer timescales.

The data from 1980-2006 show trends
of Sahel rainfall and dust during the
most recent upswing of the AMO
(Foltz & McPhaden 2008, GRL).
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Previous studies have limited to a
short period since the satellite era (1980 onward),
precluding the examination on longer timescales.
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Evan et al. (2006, GRL) have demonstrated a negative relation
between interannual variations in Atlantic TC days and dust
measured by satellite during 1982-2005.
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Evan and Mukhopadhyay (2010)
extended satellite-retrieved dust optical depth over the TNA
from 1955-2008, using modern/historical data and a proxy
record (crustal ‘H, from a Porites coral) for atmospheric dust.

Climatology of
dust for the period
of 1955-2008
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Other Data Sets Used in This Study

® Extended Reconstructed SST (ERSST) version 3.
® NCEP-NCAR reanalysis.

® ERA-40 reanalysis.

® The 20t Century Reanalysis (20CR).

® Wind station data observed in the Western Sahel.
® Global Precipitation Climatology Centre (GPCC).

® Hurricane data based on HURDAT reanalysis.

NOAA Atlantic Oceanographic & Meteorological Laboratory



The Sahel region (10°N-20°N, 20°W-40°E)
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Co-variability of the AMO, dust and Sahel rainfall

(a) North Atlantic SSTA (AMO index)
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(b) Rainfall anomalies in the Sahel
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The relationship still holds for the entire 20t century

(a) North Atlantic SSTA (AMO index)
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(b) Rainfall anomalies in the Sahel
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The spatial rainfall patterns related to the AMO
and dust aerosol in the TNA

(a) Regression (rainfall onto AMO
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Vertical velocity (at 500-hPa) associated with the AMO

A positive phase of the AMO leads to a northward shift of the
ITCZ which is associated with a strengthening of the
southwesterly monsoon and an upward motion in the Sahel.
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Relationship of winds at 700-hPa with dust aerosol
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The position inconsistency suggests that the dust changes in TNA
could not be due to wind anomalies.

We hypothesize that dust in TNA could be more due to (1) enhanced
dust production in the Sahel and (2) transport by the mean zonal
wind (instead of anomalies).
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The Bodélé Depression (an area of 40,000 km? near 16°N,
18°E), located at the southern edge of the Sahara Desert in
north central Africa, is the lowest point in Chad and the
planet’s largest single source of dust.

Two key requirements for
deflation:

(1) strong surface winds,
(2) erodible sediment.

NOAA Atlantic Oceanographic & Meteorological Laboratory



Wind difference between high & low dust years

Wind Composite

(@) NCEP-NCAR

An increased surface wind speed
across the Sahel (deflation is
proportional to wind speed cube).

These indicate that dust
production is enhanced in the
Bodélé Depression.
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Dust in the Sahel is transported to the TNA by the mean
zonal winds (instead of wind anomalies)

Pressure (mb)
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A positive feedback between the AMO and dust
via Sahel rainfall variability

/ Warm SSTA in TNA }r\

Northward shift Lower concentration
of ITCZ of dust in TNA
Southwesterly Less westward
wind anomalies dust transport
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Sahel rainfall production in the Sahel
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The AMO Simulated from 24 IPCC-AR4 Models (1850-2000)
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The AMO Simulated from 27 IPCC-ARS5 Models
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Dust and Hurricanes on Multidecadal Timescales

(a) Dust & Hurricanes (b) Dust & VWS
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* When dust concentration in TNA is low (high), the number
of Atlantic hurricanes is more (less).

* This is because dust changes meridional air temperature
gradient via dust-radiation processes and alters zonal winds
(thermal wind balance) and then vertical wind shear (VWS).
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Dust and Hurricanes on Multidecadal Timescales
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Strong VWS in the hurricane main development region (MDR)
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Summary

This study shows a multidecadal co-variability of the AMO,
dust in the TNA and rainfall in the Sahel.

It suggests a novel mechanism for NA SST variability on
multidecadal timescales: A positive feedback between the
AMO and dust via Sahel rainfall.

Dust varies inversely with the number of Atlantic
hurricanes on multidecadal timescales due to dust-related
VWS in the hurricane MDR.

An implication of this study is that coupled models need to
be able to simulate this aerosol-related feedback.

Can climate models (IPCC-ARS5) simulate this feedback?

NOAA Atlantic Oceanographic & Meteorological Laboratory



Indirect Influences of Dust on Vertical Wind Shear

* Sabhel rainfall (Landsea & Gray 1992).

 The Saharan air layer (Dunion & Velden 2004).
* North Atlantic SST (Goldenberg et al. 2001).

e Atlantic warm pool (Wang et al. 2006).

e Atlantic meridional mode (Vimont & Kossin 2007).
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A comparison with the station dust time series
observed on the island of Barbados since 1965

(c) Dust optical depth anomalies
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(d) Dust anomalies in Barbados
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Correlation is 0.70 for the yearly data and 0.84 for the 7-yr running mean
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Annual average of the wind speed cube from the observed
station data in the Western Sahel (dust production o Ww?)
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It also shows the AMO signal, consistent with the reanalysis
products. All of these indicate that an increased wind speed
(associated with the negative AMO and high TNA dust

phases) produces more dust in the dust source region.
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Kaufman et al. (2005, JGR) showed that transport of Saharan
dust is most strongly correlated with winds at 700-hPa.

about 700-hPa

04 05 06 07 08 09 1
Correlation

Figure 11. Correlation between the wind and dust optical
thickness time series measured in Capo Verde during the
summer months. One hundred and fifteen measurements
were used in the analysis. The correlation coefficient is
drawing a profile of the wind driven aerosol. Dust was at the
layer of 3—5 km, and sea salt was in the lowest 500 m. This
correlation profile serves as a virtual lidar that draws the
concentration of the wi ven aerosol.
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Observations of the Aerosol Optical Depth (AOD) in the Atlantic by
the Moderate Resolution Imaging Spectroradiometer (MODIS)

arch 2002 - . ! = March 2003

Kaufman et al. (2005, JGR)
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Where does dust in the TNA come from? Africa.
What is mechanism? Our contribution: Enhanced dust
production in the Sahel and the importance of mean winds.
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Figure 3: Mean annual dust column loading to the North Atlantic cal-

culated using MODIS aerosol optical thickness data from April 200 I IR B LCu s (2004)
- March 2004. Overlayed on the map are the sites of the nutrient

enrichment bioassay experiments with colors indicating the presence

of a stimulation of CO, fixation (red), N, fixation (blue), chlorophyll

biomass (green), and bacter/a/ product/wty (vellow) by dust. Note:

Sample analysis for N, fixation have been completed for sites south

of 20°N.
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Do dust aerosols play a role in climate changes?

(b) Detrended North Atlantic SSTA
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Influence of the AMO on global SST

(a) North Atlantic SSTA (AMO index)
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What are roles of global warming?

(a) North Atlantic SSTA (without detrended) (a) North Atlantic SSTA (AMO index)
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The warming trend is associated with a reduction of Sahel rainfall, whereas the
warm phase of the AMO after the early 1990s tends to increase Sahel rainfall.
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What are roles of global warming?
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The warming trend is associated with a reduction of Sahel rainfall, whereas the
warm phase of the AMO after the early 1990s tends to increase Sahel rainfall.
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A recent modeling study of SST contribution to 1980s drought
(mid-1990s recovery) in West Africa (Mohino et al. 2011, CD)
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Role of dust in the ocean: Some studies show
that high (low) concentration of dust in the TNA
cools (warms) the TNA.
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Figure 3 | Observed and dust-forced component of the AMM time series.
a-c, The annually averaged observed AMM time series (a), the dust-forced
component of the AMM (b) and the 5-year low-pass-filtered observed
(blue) and dust-forced component (red) of the AMM (c). Both time series
have the same normalization so that similarity between the observed and

dust-forced AMM indicates direct forcing of the AMM by African
dust outbreaks. porological Laboratory




Using HadGEM2-ES climate model, Booth et al. (2012, Nature)
focus on the forcing by volcanoes and anthropogenic aerosols.
They argue that the AMO is not an internal variability.
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However, the simulations by Booth et al. (2012, Nature) fail to
capture dust concentration in the North Atlantic on multidecadal

timescales, i.e., no the AMO signal. The authors state that this is
due to the lack of a common coherent dust response in the model.
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