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Introduction
Ice-sheet flow and sea-level rise can be sensitive to ice-shelf melting (e.g.
Walker et al, 2008).

•Fresh meltwater drives
buoyancy-driven plumes
under the ice, which
enhance melting.

•Faster flow and melting
under steeper slopes.
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Is there a feedback between meltwater plumes and evolving ice-shelf shape?

Simplified model of a meltwater plume
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A simplified model of a coupled meltwater plume and evolving ice-shelf base, to build

insight into the essential mechanisms. A static 2-D ice shelf with evolving basal profile

z = h(x, t) lies above a warm freshwater ocean, leading to a cold meltwater plume driven

by thermal buoyancy. (Density profile from McDougall and Barker, 2011)

Plume equations
Extension of the plume model of Morton, Taylor & Turner (1956) to
describe meltwater flow under an ice shelf (Wells & Worster, in prep):

Mass:

Momentum:

Heat:

Interface:

d

ds
[bU ] =E0 sinφ |U | ,

d

ds

[

bU 2
]

= bα (To − T∞) gsinφ−
τw
ρ∞

−
d

ds

[

1

2
b2α (To − T∞) g cosφ

]

,

d

ds
[bU (To − T∞)] =

qw
ρ∞cp

+ v(0)(Tw − T∞),

ρsL cosφ
∂h

∂t
= qw, tanφ =

∂h

∂x
=

1

cosφ

dh

ds

For weak subglacial discharge, and near the grounding line:

qw ∝ (κg′sinφ)1/3 (Tm − To) , τw small.

⇒ Flow and melting are faster under steeper slopes.

References: Jenkins (1991), J. Geophys. Res., 96, 20671; McDougall & Barker (2011), ISBN 978-0-646-55621-5 ; Morton et al. (1956), Proc. R. Soc. Lond. A , 234, 1; Walker et al. (2008), Geophys. Res. Lett., 35, L17503; Wells & Worster. (2008), J. Fluid Mech., 609, 111;

To flow, or not to flow?
For constant ice-shelf slope, we find 2 different cases for the plume flow:

Case 1: Strong flow, dominated by upslope buoyancy force
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Flow profiles for T∞ = 2◦C, sinφ0 = 0.01, comparing numerical solutions of plume equa-

tions (symbols) with asymptotic attractor (dashed curves). Initial conditions are mass

flux Q0 = 10−3m2 s−1, temperature To = 1.6◦C, and initial velocity U0 = 0.01m s−1.

•Average melting rate ≈ 2m/year.

•Asymptotic attractor that approximately maintains the same slope:

b ∝ x tanφ, U ∝ x1/3sin
1/3 φ

cosφ
, To − T∞ ∝

1

x1/3

cos1/3 φ

sin7/9 φ
,

∂h

∂x
∼ const.

Case 2: Weak flow, nearly horizontal plume base
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Flow for smaller initial velocity U0 = 0.005m s−1, but other parameters as above.

•Pressure gradient nearly compensates buoyancy force. Flow collapses.

•Average melting rate ≈ 0.02m/year.

Flow regime is sensitive to initial fluxes
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Strong flow and weak flow regimes occur for different initial mass flux Q0, velocity U0

and normalised temperature (T0 − Tm)/(T∞ − Tm) near the grounding line.

•Abrupt transition in the flow as the subglacial discharge changes.

Evolution of the ice shelf
For the strong flow case, the heat flux is approximately independent of
the plume flow:

qw ≈ ρ∞cpγ (κg
′sinφ)1/3 (Tm − T∞) +O(s−1/3)

Ice-shelf evolution decouples from the flow. ψ = sinφ satisfies:

∂ψ

∂t
= A

(

1 + 2ψ2
)

ψ2/3

∂ψ

∂x
, A = γ (g′κ)1/3

cp (T∞ − Tw)

L
.

Stability analysis of the ice-water interface
Perturb initial slope, sinφ = sinφ0 (1 + ε cos kx).

Linear stability analysis (ε( 1): Neutrally stable.

•Pattern propagates relative to background ice motion; phase speed vp:

V
V

vp < 0

V + vp =
2V

3

[

1− sin2 φ0
]

Ice stationary: Ice flows, in steady state:

•For shallow slope, perturbation reduces the spatially averaged melt rate:

% change: ∆m/m0 ∼ −ε2/18 for sinφ0 ( 1.

Nonlinear evolution relative to ice motion:
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Time evolution of sinφ and h(x, t) for a perturbed initial condition with sinφ0 = 0.01,

ε = 0.5, and k = 2π km−1. Curves are plotted at 1 year time intervals.

•Nonlinear wave steepening ⇒ sinφ becomes multivalued, and shocks
form causing cusps with sharp changes in slope after t ∼ 4.5 years

•Caveat: The heat transfer model breaks down for dφ/dx ) 1.

Conclusions
A coupled model describes a meltwater plume under a melting ice shelf.
Near to the grounding line:
•Plume can be strong, or weak, depending on the subglacial flux.

•A planar ice-water interface is neutrally stable to small disturbances.

•Nonlinear wave steepening generates cusps in the ice-shelf base.

Strong flow:
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insight into the essential mechanisms. A static 2-D ice shelf with evolving basal profile

z = h(x, t) lies above a warm freshwater ocean, leading to a cold meltwater plume driven

by thermal buoyancy. (Density profile from McDougall and Barker, 2011)

Plume equations
Extension of the plume model of Morton, Taylor & Turner (1956) to
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For weak subglacial discharge, and near the grounding line:

qw ∝ (κg′sinφ)1/3 (Tm − To) , τw small.

⇒ Flow and melting are faster under steeper slopes.
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To flow, or not to flow?
For constant ice-shelf slope, we find 2 different cases for the plume flow:

Case 1: Strong flow, dominated by upslope buoyancy force
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flux Q0 = 10−3m2 s−1, temperature To = 1.6◦C, and initial velocity U0 = 0.01m s−1.

•Average melting rate ≈ 2m/year.

•Asymptotic attractor that approximately maintains the same slope:
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Case 2: Weak flow, nearly horizontal plume base
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Flow for smaller initial velocity U0 = 0.005m s−1, but other parameters as above.

•Pressure gradient nearly compensates buoyancy force. Flow collapses.

•Average melting rate ≈ 0.02m/year.

Flow regime is sensitive to initial fluxes
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Strong flow and weak flow regimes occur for different initial mass flux Q0, velocity U0

and normalised temperature (T0 − Tm)/(T∞ − Tm) near the grounding line.

•Abrupt transition in the flow as the subglacial discharge changes.

Evolution of the ice shelf
For the strong flow case, the heat flux is approximately independent of
the plume flow:

qw ≈ ρ∞cpγ (κg
′sinφ)1/3 (Tm − T∞) +O(s−1/3)

Ice-shelf evolution decouples from the flow. ψ = sinφ satisfies:
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Stability analysis of the ice-water interface
Perturb initial slope, sinφ = sinφ0 (1 + ε cos kx).

Linear stability analysis (ε( 1): Neutrally stable.

•Pattern propagates relative to background ice motion; phase speed vp:

V
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vp < 0

V + vp =
2V

3
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1− sin2 φ0
]

Ice stationary: Ice flows, in steady state:

•For shallow slope, perturbation reduces the spatially averaged melt rate:

% change: ∆m/m0 ∼ −ε2/18 for sinφ0 ( 1.

Nonlinear evolution relative to ice motion:
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Time evolution of sinφ and h(x, t) for a perturbed initial condition with sinφ0 = 0.01,

ε = 0.5, and k = 2π km−1. Curves are plotted at 1 year time intervals.

•Nonlinear wave steepening ⇒ sinφ becomes multivalued, and shocks
form causing cusps with sharp changes in slope after t ∼ 4.5 years

•Caveat: The heat transfer model breaks down for dφ/dx ) 1.

Conclusions
A coupled model describes a meltwater plume under a melting ice shelf.
Near to the grounding line:
•Plume can be strong, or weak, depending on the subglacial flux.

•A planar ice-water interface is neutrally stable to small disturbances.

•Nonlinear wave steepening generates cusps in the ice-shelf base.
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insight into the essential mechanisms. A static 2-D ice shelf with evolving basal profile

z = h(x, t) lies above a warm freshwater ocean, leading to a cold meltwater plume driven

by thermal buoyancy. (Density profile from McDougall and Barker, 2011)

Plume equations
Extension of the plume model of Morton, Taylor & Turner (1956) to
describe meltwater flow under an ice shelf (Wells & Worster, in prep):
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For weak subglacial discharge, and near the grounding line:

qw ∝ (κg′sinφ)1/3 (Tm − To) , τw small.

⇒ Flow and melting are faster under steeper slopes.
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To flow, or not to flow?
For constant ice-shelf slope, we find 2 different cases for the plume flow:

Case 1: Strong flow, dominated by upslope buoyancy force
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Case 2: Weak flow, nearly horizontal plume base
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•Pressure gradient nearly compensates buoyancy force. Flow collapses.

•Average melting rate ≈ 0.02m/year.

Flow regime is sensitive to initial fluxes
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Strong flow and weak flow regimes occur for different initial mass flux Q0, velocity U0

and normalised temperature (T0 − Tm)/(T∞ − Tm) near the grounding line.

•Abrupt transition in the flow as the subglacial discharge changes.

Evolution of the ice shelf
For the strong flow case, the heat flux is approximately independent of
the plume flow:

qw ≈ ρ∞cpγ (κg
′sinφ)1/3 (Tm − T∞) +O(s−1/3)

Ice-shelf evolution decouples from the flow. ψ = sinφ satisfies:
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Stability analysis of the ice-water interface
Perturb initial slope, sinφ = sinφ0 (1 + ε cos kx).

Linear stability analysis (ε( 1): Neutrally stable.

•Pattern propagates relative to background ice motion; phase speed vp:
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]

Ice stationary: Ice flows, in steady state:

•For shallow slope, perturbation reduces the spatially averaged melt rate:

% change: ∆m/m0 ∼ −ε2/18 for sinφ0 ( 1.

Nonlinear evolution relative to ice motion:
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Time evolution of sinφ and h(x, t) for a perturbed initial condition with sinφ0 = 0.01,

ε = 0.5, and k = 2π km−1. Curves are plotted at 1 year time intervals.

•Nonlinear wave steepening ⇒ sinφ becomes multivalued, and shocks
form causing cusps with sharp changes in slope after t ∼ 4.5 years

•Caveat: The heat transfer model breaks down for dφ/dx ) 1.

Conclusions
A coupled model describes a meltwater plume under a melting ice shelf.
Near to the grounding line:
•Plume can be strong, or weak, depending on the subglacial flux.

•A planar ice-water interface is neutrally stable to small disturbances.

•Nonlinear wave steepening generates cusps in the ice-shelf base.
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z = h(x, t) lies above a warm freshwater ocean, leading to a cold meltwater plume driven
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Flow profiles for T∞ = 2◦C, sinφ0 = 0.01, comparing numerical solutions of plume equa-

tions (symbols) with asymptotic attractor (dashed curves). Initial conditions are mass

flux Q0 = 10−3m2 s−1, temperature To = 1.6◦C, and initial velocity U0 = 0.01m s−1.

•Average melting rate ≈ 2m/year.

•Asymptotic attractor that approximately maintains the same slope:

b ∝ x tanφ, U ∝ x1/3sin
1/3 φ

cosφ
, To − T∞ ∝

1

x1/3

cos1/3 φ

sin7/9 φ
,

∂h

∂x
∼ const.

Case 2: Weak flow, nearly horizontal plume base
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Flow for smaller initial velocity U0 = 0.005m s−1, but other parameters as above.

•Pressure gradient nearly compensates buoyancy force. Flow collapses.

•Average melting rate ≈ 0.02m/year.

Flow regime is sensitive to initial fluxes
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Strong flow and weak flow regimes occur for different initial mass flux Q0, velocity U0

and normalised temperature (T0 − Tm)/(T∞ − Tm) near the grounding line.

•Abrupt transition in the flow as the subglacial discharge changes.

Evolution of the ice shelf
For the strong flow case, the heat flux is approximately independent of
the plume flow:

qw ≈ ρ∞cpγ (κg
′sinφ)1/3 (Tm − T∞) +O(s−1/3)

Ice-shelf evolution decouples from the flow. ψ = sinφ satisfies:

∂ψ

∂t
= A

(

1 + 2ψ2
)

ψ2/3

∂ψ

∂x
, A = γ (g′κ)1/3

cp (T∞ − Tw)

L
.

Stability analysis of the ice-water interface
Perturb initial slope, sinφ = sinφ0 (1 + ε cos kx).

Linear stability analysis (ε( 1): Neutrally stable.

•Pattern propagates relative to background ice motion; phase speed vp:

V
V

vp < 0

V + vp =
2V

3

[

1− sin2 φ0
]

Ice stationary: Ice flows, in steady state:

•For shallow slope, perturbation reduces the spatially averaged melt rate:

% change: ∆m/m0 ∼ −ε2/18 for sinφ0 ( 1.

Nonlinear evolution relative to ice motion:
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Time evolution of sinφ and h(x, t) for a perturbed initial condition with sinφ0 = 0.01,

ε = 0.5, and k = 2π km−1. Curves are plotted at 1 year time intervals.

•Nonlinear wave steepening ⇒ sinφ becomes multivalued, and shocks
form causing cusps with sharp changes in slope after t ∼ 4.5 years

•Caveat: The heat transfer model breaks down for dφ/dx ) 1.

Conclusions
A coupled model describes a meltwater plume under a melting ice shelf.
Near to the grounding line:
•Plume can be strong, or weak, depending on the subglacial flux.

•A planar ice-water interface is neutrally stable to small disturbances.

•Nonlinear wave steepening generates cusps in the ice-shelf base.
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Introduction
Ice-sheet flow and sea-level rise can be sensitive to ice-shelf melting (e.g.
Walker et al, 2008).

•Fresh meltwater drives
buoyancy-driven plumes
under the ice, which
enhance melting.

•Faster flow and melting
under steeper slopes.
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A simplified model of a coupled meltwater plume and evolving ice-shelf base, to build

insight into the essential mechanisms. A static 2-D ice shelf with evolving basal profile

z = h(x, t) lies above a warm freshwater ocean, leading to a cold meltwater plume driven

by thermal buoyancy. (Density profile from McDougall and Barker, 2011)

Plume equations
Extension of the plume model of Morton, Taylor & Turner (1956) to
describe meltwater flow under an ice shelf (Wells & Worster, in prep):

Mass:

Momentum:

Heat:

Interface:

d

ds
[bU ] =E0 sinφ |U | ,

d

ds

[

bU 2
]

= bα (To − T∞) gsinφ−
τw
ρ∞

−
d

ds

[

1

2
b2α (To − T∞) g cosφ

]

,

d

ds
[bU (To − T∞)] =

qw
ρ∞cp

+ v(0)(Tw − T∞),

ρsL cosφ
∂h

∂t
= qw, tanφ =

∂h

∂x
=

1

cosφ

dh

ds

For weak subglacial discharge, and near the grounding line:

qw ∝ (κg′sinφ)1/3 (Tm − To) , τw small.

⇒ Flow and melting are faster under steeper slopes.

References: Jenkins (1991), J. Geophys. Res., 96, 20671; McDougall & Barker (2011), ISBN 978-0-646-55621-5 ; Morton et al. (1956), Proc. R. Soc. Lond. A , 234, 1; Walker et al. (2008), Geophys. Res. Lett., 35, L17503; Wells & Worster. (2008), J. Fluid Mech., 609, 111;

To flow, or not to flow?
For constant ice-shelf slope, we find 2 different cases for the plume flow:

Case 1: Strong flow, dominated by upslope buoyancy force
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Flow profiles for T∞ = 2◦C, sinφ0 = 0.01, comparing numerical solutions of plume equa-

tions (symbols) with asymptotic attractor (dashed curves). Initial conditions are mass

flux Q0 = 10−3m2 s−1, temperature To = 1.6◦C, and initial velocity U0 = 0.01m s−1.

•Average melting rate ≈ 2m/year.

•Asymptotic attractor that approximately maintains the same slope:

b ∝ x tanφ, U ∝ x1/3sin
1/3 φ

cosφ
, To − T∞ ∝

1

x1/3

cos1/3 φ

sin7/9 φ
,

∂h

∂x
∼ const.

Case 2: Weak flow, nearly horizontal plume base
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Flow for smaller initial velocity U0 = 0.005m s−1, but other parameters as above.

•Pressure gradient nearly compensates buoyancy force. Flow collapses.

•Average melting rate ≈ 0.02m/year.

Flow regime is sensitive to initial fluxes
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Strong flow and weak flow regimes occur for different initial mass flux Q0, velocity U0

and normalised temperature (T0 − Tm)/(T∞ − Tm) near the grounding line.

•Abrupt transition in the flow as the subglacial discharge changes.

Evolution of the ice shelf
For the strong flow case, the heat flux is approximately independent of
the plume flow:

qw ≈ ρ∞cpγ (κg
′sinφ)1/3 (Tm − T∞) +O(s−1/3)

Ice-shelf evolution decouples from the flow. ψ = sinφ satisfies:

∂ψ

∂t
= A

(

1 + 2ψ2
)

ψ2/3

∂ψ

∂x
, A = γ (g′κ)1/3

cp (T∞ − Tw)
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Stability analysis of the ice-water interface
Perturb initial slope, sinφ = sinφ0 (1 + ε cos kx).

Linear stability analysis (ε( 1): Neutrally stable.

•Pattern propagates relative to background ice motion; phase speed vp:

V
V

vp < 0

V + vp =
2V

3

[

1− sin2 φ0
]

Ice stationary: Ice flows, in steady state:

•For shallow slope, perturbation reduces the spatially averaged melt rate:

% change: ∆m/m0 ∼ −ε2/18 for sinφ0 ( 1.

Nonlinear evolution relative to ice motion:
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Time evolution of sinφ and h(x, t) for a perturbed initial condition with sinφ0 = 0.01,

ε = 0.5, and k = 2π km−1. Curves are plotted at 1 year time intervals.

•Nonlinear wave steepening ⇒ sinφ becomes multivalued, and shocks
form causing cusps with sharp changes in slope after t ∼ 4.5 years

•Caveat: The heat transfer model breaks down for dφ/dx ) 1.

Conclusions
A coupled model describes a meltwater plume under a melting ice shelf.
Near to the grounding line:
•Plume can be strong, or weak, depending on the subglacial flux.

•A planar ice-water interface is neutrally stable to small disturbances.

•Nonlinear wave steepening generates cusps in the ice-shelf base.
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Ice-sheet flow and sea-level rise can be sensitive to ice-shelf melting (e.g.
Walker et al, 2008).

•Fresh meltwater drives
buoyancy-driven plumes
under the ice, which
enhance melting.

•Faster flow and melting
under steeper slopes.
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A simplified model of a coupled meltwater plume and evolving ice-shelf base, to build

insight into the essential mechanisms. A static 2-D ice shelf with evolving basal profile

z = h(x, t) lies above a warm freshwater ocean, leading to a cold meltwater plume driven

by thermal buoyancy. (Density profile from McDougall and Barker, 2011)

Plume equations
Extension of the plume model of Morton, Taylor & Turner (1956) to
describe meltwater flow under an ice shelf (Wells & Worster, in prep):

Mass:

Momentum:

Heat:

Interface:

d

ds
[bU ] =E0 sinφ |U | ,

d

ds

[

bU 2
]

= bα (To − T∞) gsinφ−
τw
ρ∞

−
d

ds

[

1

2
b2α (To − T∞) g cosφ

]

,

d

ds
[bU (To − T∞)] =

qw
ρ∞cp

+ v(0)(Tw − T∞),

ρsL cosφ
∂h

∂t
= qw, tanφ =

∂h

∂x
=

1

cosφ

dh

ds

For weak subglacial discharge, and near the grounding line:

qw ∝ (κg′sinφ)1/3 (Tm − To) , τw small.

⇒ Flow and melting are faster under steeper slopes.

References: Jenkins (1991), J. Geophys. Res., 96, 20671; McDougall & Barker (2011), ISBN 978-0-646-55621-5 ; Morton et al. (1956), Proc. R. Soc. Lond. A , 234, 1; Walker et al. (2008), Geophys. Res. Lett., 35, L17503; Wells & Worster. (2008), J. Fluid Mech., 609, 111;

To flow, or not to flow?
For constant ice-shelf slope, we find 2 different cases for the plume flow:

Case 1: Strong flow, dominated by upslope buoyancy force
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Flow profiles for T∞ = 2◦C, sinφ0 = 0.01, comparing numerical solutions of plume equa-

tions (symbols) with asymptotic attractor (dashed curves). Initial conditions are mass

flux Q0 = 10−3m2 s−1, temperature To = 1.6◦C, and initial velocity U0 = 0.01m s−1.

•Average melting rate ≈ 2m/year.

•Asymptotic attractor that approximately maintains the same slope:

b ∝ x tanφ, U ∝ x1/3sin
1/3 φ

cosφ
, To − T∞ ∝

1

x1/3

cos1/3 φ

sin7/9 φ
,

∂h

∂x
∼ const.

Case 2: Weak flow, nearly horizontal plume base
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Flow for smaller initial velocity U0 = 0.005m s−1, but other parameters as above.

•Pressure gradient nearly compensates buoyancy force. Flow collapses.

•Average melting rate ≈ 0.02m/year.

Flow regime is sensitive to initial fluxes
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Strong flow and weak flow regimes occur for different initial mass flux Q0, velocity U0

and normalised temperature (T0 − Tm)/(T∞ − Tm) near the grounding line.

•Abrupt transition in the flow as the subglacial discharge changes.

Evolution of the ice shelf
For the strong flow case, the heat flux is approximately independent of
the plume flow:

qw ≈ ρ∞cpγ (κg
′sinφ)1/3 (Tm − T∞) +O(s−1/3)

Ice-shelf evolution decouples from the flow. ψ = sinφ satisfies:

∂ψ

∂t
= A

(

1 + 2ψ2
)

ψ2/3

∂ψ

∂x
, A = γ (g′κ)1/3

cp (T∞ − Tw)
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Stability analysis of the ice-water interface
Perturb initial slope, sinφ = sinφ0 (1 + ε cos kx).

Linear stability analysis (ε( 1): Neutrally stable.

•Pattern propagates relative to background ice motion; phase speed vp:

V
V

vp < 0

V + vp =
2V

3

[

1− sin2 φ0
]

Ice stationary: Ice flows, in steady state:

•For shallow slope, perturbation reduces the spatially averaged melt rate:

% change: ∆m/m0 ∼ −ε2/18 for sinφ0 ( 1.

Nonlinear evolution relative to ice motion:
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Time evolution of sinφ and h(x, t) for a perturbed initial condition with sinφ0 = 0.01,

ε = 0.5, and k = 2π km−1. Curves are plotted at 1 year time intervals.

•Nonlinear wave steepening ⇒ sinφ becomes multivalued, and shocks
form causing cusps with sharp changes in slope after t ∼ 4.5 years

•Caveat: The heat transfer model breaks down for dφ/dx ) 1.

Conclusions
A coupled model describes a meltwater plume under a melting ice shelf.
Near to the grounding line:
•Plume can be strong, or weak, depending on the subglacial flux.

•A planar ice-water interface is neutrally stable to small disturbances.

•Nonlinear wave steepening generates cusps in the ice-shelf base.

Flow collapses:
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A simplified model of a coupled meltwater plume and evolving ice-shelf base, to build

insight into the essential mechanisms. A static 2-D ice shelf with evolving basal profile

z = h(x, t) lies above a warm freshwater ocean, leading to a cold meltwater plume driven

by thermal buoyancy. (Density profile from McDougall and Barker, 2011)

Plume equations
Extension of the plume model of Morton, Taylor & Turner (1956) to
describe meltwater flow under an ice shelf (Wells & Worster, in prep):

Mass:

Momentum:

Heat:

Interface:

d

ds
[bU ] =E0 sinφ |U | ,
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[

bU 2
]

= bα (To − T∞) gsinφ−
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ρ∞

−
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[
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+ v(0)(Tw − T∞),

ρsL cosφ
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= qw, tanφ =
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=

1
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For weak subglacial discharge, and near the grounding line:

qw ∝ (κg′sinφ)1/3 (Tm − To) , τw small.

⇒ Flow and melting are faster under steeper slopes.
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To flow, or not to flow?
For constant ice-shelf slope, we find 2 different cases for the plume flow:

Case 1: Strong flow, dominated by upslope buoyancy force
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Flow profiles for T∞ = 2◦C, sinφ0 = 0.01, comparing numerical solutions of plume equa-

tions (symbols) with asymptotic attractor (dashed curves). Initial conditions are mass

flux Q0 = 10−3m2 s−1, temperature To = 1.6◦C, and initial velocity U0 = 0.01m s−1.

•Average melting rate ≈ 2m/year.

•Asymptotic attractor that approximately maintains the same slope:
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,
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Case 2: Weak flow, nearly horizontal plume base
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Flow for smaller initial velocity U0 = 0.005m s−1, but other parameters as above.

•Pressure gradient nearly compensates buoyancy force. Flow collapses.

•Average melting rate ≈ 0.02m/year.

Flow regime is sensitive to initial fluxes
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Strong flow and weak flow regimes occur for different initial mass flux Q0, velocity U0

and normalised temperature (T0 − Tm)/(T∞ − Tm) near the grounding line.

•Abrupt transition in the flow as the subglacial discharge changes.

Evolution of the ice shelf
For the strong flow case, the heat flux is approximately independent of
the plume flow:

qw ≈ ρ∞cpγ (κg
′sinφ)1/3 (Tm − T∞) +O(s−1/3)

Ice-shelf evolution decouples from the flow. ψ = sinφ satisfies:
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Stability analysis of the ice-water interface
Perturb initial slope, sinφ = sinφ0 (1 + ε cos kx).

Linear stability analysis (ε( 1): Neutrally stable.

•Pattern propagates relative to background ice motion; phase speed vp:
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vp < 0

V + vp =
2V

3

[

1− sin2 φ0
]

Ice stationary: Ice flows, in steady state:

•For shallow slope, perturbation reduces the spatially averaged melt rate:

% change: ∆m/m0 ∼ −ε2/18 for sinφ0 ( 1.

Nonlinear evolution relative to ice motion:
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Time evolution of sinφ and h(x, t) for a perturbed initial condition with sinφ0 = 0.01,

ε = 0.5, and k = 2π km−1. Curves are plotted at 1 year time intervals.

•Nonlinear wave steepening ⇒ sinφ becomes multivalued, and shocks
form causing cusps with sharp changes in slope after t ∼ 4.5 years

•Caveat: The heat transfer model breaks down for dφ/dx ) 1.

Conclusions
A coupled model describes a meltwater plume under a melting ice shelf.
Near to the grounding line:
•Plume can be strong, or weak, depending on the subglacial flux.

•A planar ice-water interface is neutrally stable to small disturbances.

•Nonlinear wave steepening generates cusps in the ice-shelf base.
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Introduction
Ice-sheet flow and sea-level rise can be sensitive to ice-shelf melting (e.g.
Walker et al, 2008).

•Fresh meltwater drives
buoyancy-driven plumes
under the ice, which
enhance melting.

•Faster flow and melting
under steeper slopes.
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A simplified model of a coupled meltwater plume and evolving ice-shelf base, to build

insight into the essential mechanisms. A static 2-D ice shelf with evolving basal profile

z = h(x, t) lies above a warm freshwater ocean, leading to a cold meltwater plume driven

by thermal buoyancy. (Density profile from McDougall and Barker, 2011)

Plume equations
Extension of the plume model of Morton, Taylor & Turner (1956) to
describe meltwater flow under an ice shelf (Wells & Worster, in prep):

Mass:

Momentum:

Heat:

Interface:

d

ds
[bU ] =E0 sinφ |U | ,

d

ds

[

bU 2
]

= bα (To − T∞) gsinφ−
τw
ρ∞

−
d

ds

[

1

2
b2α (To − T∞) g cosφ

]

,

d

ds
[bU (To − T∞)] =

qw
ρ∞cp

+ v(0)(Tw − T∞),

ρsL cosφ
∂h

∂t
= qw, tanφ =

∂h

∂x
=

1

cosφ

dh

ds

For weak subglacial discharge, and near the grounding line:

qw ∝ (κg′sinφ)1/3 (Tm − To) , τw small.

⇒ Flow and melting are faster under steeper slopes.

References: Jenkins (1991), J. Geophys. Res., 96, 20671; McDougall & Barker (2011), ISBN 978-0-646-55621-5 ; Morton et al. (1956), Proc. R. Soc. Lond. A , 234, 1; Walker et al. (2008), Geophys. Res. Lett., 35, L17503; Wells & Worster. (2008), J. Fluid Mech., 609, 111;

To flow, or not to flow?
For constant ice-shelf slope, we find 2 different cases for the plume flow:

Case 1: Strong flow, dominated by upslope buoyancy force
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Flow profiles for T∞ = 2◦C, sinφ0 = 0.01, comparing numerical solutions of plume equa-

tions (symbols) with asymptotic attractor (dashed curves). Initial conditions are mass

flux Q0 = 10−3m2 s−1, temperature To = 1.6◦C, and initial velocity U0 = 0.01m s−1.

•Average melting rate ≈ 2m/year.

•Asymptotic attractor that approximately maintains the same slope:

b ∝ x tanφ, U ∝ x1/3sin
1/3 φ

cosφ
, To − T∞ ∝

1

x1/3

cos1/3 φ

sin7/9 φ
,

∂h

∂x
∼ const.

Case 2: Weak flow, nearly horizontal plume base
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Flow for smaller initial velocity U0 = 0.005m s−1, but other parameters as above.

•Pressure gradient nearly compensates buoyancy force. Flow collapses.

•Average melting rate ≈ 0.02m/year.

Flow regime is sensitive to initial fluxes
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Strong flow and weak flow regimes occur for different initial mass flux Q0, velocity U0

and normalised temperature (T0 − Tm)/(T∞ − Tm) near the grounding line.

•Abrupt transition in the flow as the subglacial discharge changes.

Evolution of the ice shelf
For the strong flow case, the heat flux is approximately independent of
the plume flow:

qw ≈ ρ∞cpγ (κg
′sinφ)1/3 (Tm − T∞) +O(s−1/3)

Ice-shelf evolution decouples from the flow. ψ = sinφ satisfies:

∂ψ

∂t
= A

(

1 + 2ψ2
)

ψ2/3

∂ψ

∂x
, A = γ (g′κ)1/3

cp (T∞ − Tw)

L
.

Stability analysis of the ice-water interface
Perturb initial slope, sinφ = sinφ0 (1 + ε cos kx).

Linear stability analysis (ε( 1): Neutrally stable.

•Pattern propagates relative to background ice motion; phase speed vp:

V
V

vp < 0

V + vp =
2V

3

[

1− sin2 φ0
]

Ice stationary: Ice flows, in steady state:

•For shallow slope, perturbation reduces the spatially averaged melt rate:

% change: ∆m/m0 ∼ −ε2/18 for sinφ0 ( 1.

Nonlinear evolution relative to ice motion:
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Time evolution of sinφ and h(x, t) for a perturbed initial condition with sinφ0 = 0.01,

ε = 0.5, and k = 2π km−1. Curves are plotted at 1 year time intervals.

•Nonlinear wave steepening ⇒ sinφ becomes multivalued, and shocks
form causing cusps with sharp changes in slope after t ∼ 4.5 years

•Caveat: The heat transfer model breaks down for dφ/dx ) 1.

Conclusions
A coupled model describes a meltwater plume under a melting ice shelf.
Near to the grounding line:
•Plume can be strong, or weak, depending on the subglacial flux.

•A planar ice-water interface is neutrally stable to small disturbances.

•Nonlinear wave steepening generates cusps in the ice-shelf base.
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Ice-sheet flow and sea-level rise can be sensitive to ice-shelf melting (e.g.
Walker et al, 2008).
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under steeper slopes.
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insight into the essential mechanisms. A static 2-D ice shelf with evolving basal profile

z = h(x, t) lies above a warm freshwater ocean, leading to a cold meltwater plume driven

by thermal buoyancy. (Density profile from McDougall and Barker, 2011)

Plume equations
Extension of the plume model of Morton, Taylor & Turner (1956) to
describe meltwater flow under an ice shelf (Wells & Worster, in prep):
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Momentum:
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Interface:
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= qw, tanφ =
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=
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For weak subglacial discharge, and near the grounding line:

qw ∝ (κg′sinφ)1/3 (Tm − To) , τw small.

⇒ Flow and melting are faster under steeper slopes.
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To flow, or not to flow?
For constant ice-shelf slope, we find 2 different cases for the plume flow:

Case 1: Strong flow, dominated by upslope buoyancy force
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tions (symbols) with asymptotic attractor (dashed curves). Initial conditions are mass

flux Q0 = 10−3m2 s−1, temperature To = 1.6◦C, and initial velocity U0 = 0.01m s−1.

•Average melting rate ≈ 2m/year.

•Asymptotic attractor that approximately maintains the same slope:

b ∝ x tanφ, U ∝ x1/3sin
1/3 φ
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Case 2: Weak flow, nearly horizontal plume base
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Flow for smaller initial velocity U0 = 0.005m s−1, but other parameters as above.

•Pressure gradient nearly compensates buoyancy force. Flow collapses.

•Average melting rate ≈ 0.02m/year.

Flow regime is sensitive to initial fluxes
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Strong flow and weak flow regimes occur for different initial mass flux Q0, velocity U0

and normalised temperature (T0 − Tm)/(T∞ − Tm) near the grounding line.

•Abrupt transition in the flow as the subglacial discharge changes.

Evolution of the ice shelf
For the strong flow case, the heat flux is approximately independent of
the plume flow:

qw ≈ ρ∞cpγ (κg
′sinφ)1/3 (Tm − T∞) +O(s−1/3)

Ice-shelf evolution decouples from the flow. ψ = sinφ satisfies:
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Stability analysis of the ice-water interface
Perturb initial slope, sinφ = sinφ0 (1 + ε cos kx).

Linear stability analysis (ε( 1): Neutrally stable.

•Pattern propagates relative to background ice motion; phase speed vp:
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vp < 0

V + vp =
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]

Ice stationary: Ice flows, in steady state:

•For shallow slope, perturbation reduces the spatially averaged melt rate:

% change: ∆m/m0 ∼ −ε2/18 for sinφ0 ( 1.

Nonlinear evolution relative to ice motion:
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Time evolution of sinφ and h(x, t) for a perturbed initial condition with sinφ0 = 0.01,

ε = 0.5, and k = 2π km−1. Curves are plotted at 1 year time intervals.

•Nonlinear wave steepening ⇒ sinφ becomes multivalued, and shocks
form causing cusps with sharp changes in slope after t ∼ 4.5 years

•Caveat: The heat transfer model breaks down for dφ/dx ) 1.

Conclusions
A coupled model describes a meltwater plume under a melting ice shelf.
Near to the grounding line:
•Plume can be strong, or weak, depending on the subglacial flux.

•A planar ice-water interface is neutrally stable to small disturbances.

•Nonlinear wave steepening generates cusps in the ice-shelf base.
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Key conclusions:

•Melting of ice shelves and meltwater flow are sensitive to 
subglacial fluxes.
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Key conclusions:

•Melting of ice shelves and meltwater flow are sensitive to 
subglacial fluxes.

•Near to the grounding line, basal undulations propagate 
relative to the ice, but the amplitude doesn’t grow.


