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Published estimates of the aerosol indirect effect
Anthropogenic changes in net radiation at the TOA
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Critical interactions in low clouds
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CPT Goals

Chief deliverable: implementation of new
parameterization (CLUBB) unifying turbulence, cloud

and shallow convection schemes within NCAR and
GFDL GCMs

Couple CLUBB with model microphysics scheme

Investigate aerosol indirect effects (AIEs) in sensitivity
studies using large eddy simulation, aircraft/satellite
data, and CLUBB => use to improve PDF scheme
representation of AlEs

Develop toolkit for testing GCM using relevant
satellite datasets and metrics



Model physics in climate models

 -Boundary-tayermixing—
. Shall ’ Replace with
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* Deep convection
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CLUBB = Cloud Layers Unified By Binormals



Dynamics-Based PDFs for Cloud
Parameterization: Motivation

e Moisture-based PDFs (widely used to represent cloud
cover in GCMs) are not linked to dynamics of cloud

formation and dissipation

>

CF=0.8

e Key microphysical and
macrophysical processes like drop
activation, entrainment, and
precip. formation are closely
linked to vertical motions, i.e. :
need joint distribution of f R BH= ol
thermodynamics and vertical
motion

probability




Building a PDF-based parameterization

Advance prognostic moment equations

o ! '3 1.1 . Inl
w, 0;, g, w? w?s qt , Hl , qt0l, w'qy, wo
Use PDF to close higher-order Select PDF from functional
moments, buoyancy terms ﬁ t form to match
'w’qzz, w’922, w’q167, w’2q£, w’29l', w'4, moments
a0, 60, w'ol, w3,

A4

Diagnose cloud fraction,
liquid water, droplet
number from PDF

Adapted from Golaz et al. 2002a,b (JAS)




CLUBB SCM reproduces LES responses to aerosols
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2011)

See also Guo et al. (2010, GMD)



Comparison of LES turbulence with lidar
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Sensitivity tests

Control
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A first look at aerosol indirect effects in CAM-CLUBB

® Preliminary AIE experiment performed with CAM-CLUBB

¢ Ran CAMS and CAM-CLUBB for two years at | degree for both present
day (PD) and preindustrial (Pl) emissions

CAM5 CAM-CLUBB
A SWCF -1.6 W/m? - 1.8 W/m?
A LWCF 0.5 W/m? 0.4 W/m?
A(SWCF + LWCF) -1.1 W/m? - 1.4W/m?
RFP -1.4W/m? - 1.6 W/m?

® Reasonable results for a preliminary investigation. Detailed analysis is
needed



Challenge: microphysics unification

e Conceptually difficult to unify CLUBB (which predicts subgrid
macrophysical variability) with microphysics schemes to
produce precipitation

e CLUBB generates subgrid variability in condensate, but how to
use this to generate realistic precipitation variability

— Current workaround is to invoke model subcolumns, whereby the
subgrid distribution of precipitation is generated by a number of
distinct realizations drawn from the CLUBB-predicted pdf

— May need to introduce prognostic precipitation (can be
computationally expensive) to obtain correct balance of
processes creating precipitation

— Current microphysics scheme in CAM may need upgrades to deal
with shallow cumulus



How model rain is produced: Accretion (raindrops collecting cloud
drops) vs Autoconversion (cloud drops coalescing with each other)

Vert Avg Acc/Auto Ratio (O < LWP < 30 gm- ") VeIt Avg Acc/Auto Ratlo (0 < LWP < 1500 gm- 2)

Process models: Ratio of accretion to
autoconversion increases with cloud condensate
(liguid water path)

CAMS: Ratio decreases with condensate ‘
Too much autoconversion => precipitation likely o)

too sensitive to aerosols 102 10° 10*

Acc/Auto




Using Satellite Data to Improve Climate Models

e Cloud microphysical processes occur at small scales and are non-linear

— Calculation of these processes in coarse resolution global models requires
knowledge of the sub-grid variability.

— CloudSat (rain water) and MODIS (cloud water) provide an estimate of the sub-
grid variability that can be used to improve the simulation of microphysical
processes (e.g. accretion) in models

Estimating Cloud/Rain Covariance Comparing Observations to Theory

Existing e CloudSat/MODIS
parameterization
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Contours show the enhancement of accretion rates by including sub-grid variability.



Low Cloud Fraction
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Low Cloud Fraction (all day, annual averages)
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Future work

Implement subcolumn framework to drive
microphysics in CAM-CLUBB.

Implement analytic coupling between CLUBB and key
microphysical processes in AM3-CLUBB.

. Compare approaches 1 and 2.

4. Continue to improve understanding of model errors

using satellite observations and LES.

. Quantify and explore aerosol indirect effects in CAM-
CLUBB and AM3-CLUBB.



