Signature of the Atlantic Meridional Overturning Circulation in the North Atlantic Dynamic Sea Level

Jianjun Yin

Department of Geosciences University of Arizona

Paul Goddard (UA), Stephen Griffies (GFDL) and Ronald Stouffer (GFDL)

2013 US AMOC/UK RAPID Meeting

Outline

- Mean dynamic sea level (DSL) in the North Atlantic and along the U.S. East Coast
- Sea level rise (SLR) observations
 - Satellite altimetry
 - Tide gauges
- GFDL ESM2M simulations and projections
 - Two modes of the DSL variability and change
 - AMOC-DSL relationship
 - 21st century projections of the DSL along the U.S. East Coast
- Conclusions

Terminology

Dynamic sea level (η) : the sea surface deviation from the geoid (z=0 in climate models).

$$g\nabla \eta = -\frac{g}{H\rho_0} \int_{-H}^{0} \int_{z}^{0} \nabla \rho dz' dz - f\mathbf{k} \times \mathbf{V}$$

baroclinic

Steric sea level (*h*): sea level gradient induced by of ocean density variation

$$h(x, y, t) = -\frac{1}{\rho_0} \int_{-Z}^{0} [\rho(T, S, P) - \rho_0] dz$$

- Thermosteric sea level: temperature effect $h_{thermo}(x, y, t) = -\frac{1}{\rho_0} \int_{-Z}^{0} [\rho(T, S_0, P) \rho_0] dz$ Halosteric sea level: salinity effect $h_{halo}(x, y, t) = -\frac{1}{\rho_0} \int_{-Z}^{0} [\rho(T_0, S, P) \rho_0] dz$

Mean DSL in the North Atlantic

Dynamic sea level

Offshore and Alongshore Gradient

- Cross-current DSL difference: Cape Hatteras Upstream: 0.2-0.5 m Downstream: 0.9-1.1 m
 - Alongshore gradient - 0.6 m drop from Florida to Maine
 - Strong gradient north of Cape Hatteras
- Steric effect associated with distribution of different water masses

Lines: Mean DSL along the East Coast of U.S. Rectangles: Mean DSL difference across the Gulf Stream ($\Delta \eta$)

Temperature and Salinity Effect

- PHC, upper 1500 m
- The DSL gradient is mainly set up by the temperature variation
- Salinity effect partially compensates

Outline

- Mean dynamic sea level (DSL) in the North Atlantic and along the U.S. East Coast
- Sea level rise (SLR) observations
 - Satellite altimetry
 - Tide gauges
- GFDL ESM2M simulations and projections
 - Two modes of the DSL variability and change
 - AMOC-DSL relationship
 - 21st century projections of the DSL along the U.S. East Coast
- Conclusions

Decadal Trend of the North Atlantic DSL

Covarying dipole between the Gulf Stream and subpolar gyre

(Hakkinen and Rhines, 2004; Zhang, 2008; Lorbacher et al., 2010)

2003-2012

Contrast across the Gulf Stream and Cape Hatteras North – high South – low (Yin et al., 2009; Sallenger et al.,

(CSIRO altimetry data)

U.S. East Coast SLR Regimes

Coastal SLR Patterns

Long-term annual tide gauge data (PSMSL)

Key West – Southeast Norfolk – Mid-Atlantic Boston – New England

U.S. East Coast SLR Patterns

1950-2012 Middle-High

SLR faster in Mid-Atlantic

SLR rate decreased to the north and south

1993-2012 North-High South-Low

SLR faster north of Cape Hatteras SLR slower south of Cape Hatteras

GPS correction: Woppelmann et al. 2009 GIA correction: Peltier 2004

Outline

- Mean dynamic sea level (DSL) in the North Atlantic and along the U.S. East Coast
- Sea level rise (SLR) observations
 - Satellite altimetry
 - Tide gauges
- GFDL ESM2M simulations and projections
 - Two modes of the DSL variability and change
 - AMOC-DSL relationship
 - 21st century projections of the DSL along the U.S. East Coast
- Conclusions

GFDL ESM2M

- Delworth et al., 2006; Dunne et al., 2012 ۲
- Atmosphere: 2.5°x2°, 24 levels; Ocean: 1°x(1°-1/3°), 50 levels
- Free ocean surface and real freshwater flux
- Explicit simulation of global carbon cycle ۲
- CMIP5 runs: historical (1861-2005); RCP projection runs (2005-2100) ۲
- Dynamic sea level rise analysis ۲

$$\Delta \eta(x, y, t) = \frac{\Delta p_b(x, y, t)}{g\rho_0} + \Delta h'(x, y, t)$$
Mass redistribution Local steric

$$\Delta h(x, y, t) = -\frac{1}{\rho_0} \int_{-H}^{\eta} \Delta \rho dz$$
$$\overline{\Delta h}(t) = \frac{1}{A} \int_{global} \Delta h dA$$
$$\Delta h'(x, y, t) = \Delta h - \overline{\Delta h}$$

NOAA

$$\overline{\Delta h}(t) = \frac{1}{A} \int_{\text{global}} \Delta h dA \qquad \text{(Global steric)}$$

$$\Delta h'(x, y, t) = \Delta h - \overline{\Delta h} \qquad \text{(Local steric)}$$

20th Century Mode (DSL)

21st Century Mode (DSL)

20th Century Mode (obs)

EOF1 altimetry (1993-2012) 60°N 40°N 20°N CSIRO data

EOF1 Ocean Heat Content (1955-2012)

Trend of wind stress and Sverdrup streamfunction (1948-2007)

21st Century Mode

Mechanism

Buoyancy flux:

$$B = (g / \rho_0) [\alpha Q_{HF} / c_p - \rho_0 \beta S(E - P - R)]$$

 α : thermal expansion coefficient β : saline contraction coefficient Q_{HF} : net air-sea heat flux c_p : specific heat for seawater E: evaporation P: precipitation R: runoff

AMOC vs DSL

- High correlation between the AMOC weakening and dynamic SLR on the U.S. East Coast
- Dynamic SLR superimposed on global mean SLR, leading to high vulnerability of the U.S. East Coast to future SLR

Impact

Elevated storm surges, beach erosion,
 inundation of low-lying area, damages to
 coastal infrastructure and ecosystems

Conclusions

- The SLR along the U.S. East Coast switched from a middle-high pattern (faster in Mid-Atlantic) during the 20th century to a north-high south-low pattern (separating at Cape Hatteras) during the past decades.
- GFDL ESM2M suggests two distinct modes of the DSL variability and change in the 20th and 21st century in the North Atlantic.
- The middle-high pattern of coastal sea level rise during the 20th century was induced by northward shift of the Gulf Stream.
- The north-high south-low pattern during the 21st century is mainly caused by the significant decline of the cross-Gulf-Stream density contrast, i.e., the baroclinic process associated with the AMOC weakening.
- The northeast coast of the U.S. is particularly vulnerable to future sea level rise and storm surge.