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The RAPID program was established since 2004 to monitor
AMOC variations at 26.5°N [Cunningham et al. 2007], and
provides important information about seasonal and inter-annual
AMOC variations. However, much less is known for the low
frequency AMOC variations.



Atlantic Meridional Overturning Circulation (AMOC)
Fingerprints

* To reconstruct the past AMOC variations when no direct
observations are available, as well as to evaluate future
AMOC impacts, it will be very useful to develop fingerprints
for AMOC variations.

* The fingerprints need to be variables that can be derived
from both climate models and observations. The fingerprints
would link the AMOC with variables that are observed
extensively.

« |dentification of such fingerprints will contribute to the
monitoring of AMOC variations, and improve assessments of
the impacts of AMOC variability on global climate change.
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Paleo records from sediment cores in the North Atlantic suggest that the

AMOC changes since LGM were coherent with the subtropical North
Atlantic SST changes (McManus et al., Nature, 2004)



Global Synchronization of Abrupt Climate Change Indicated by Paleo
Records is Consistent with Modeled Responses to the Weakening of AMOC

Modeled SST change due to

Schematic diagram of paleo records
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Paleo records and modeling results (Zhang and Delworth, 2005) suggest that:
Weaker AMOC is linked to a southward ITCZ shift in both Atlantic and Pacific. This
inter-nemispheric asymmetry is another signature of AMOC changes.
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In-phase link between high- and low-latitude Atlantic climate variations during the

Holocene (DeMenocal et al, Science, 2000)
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The Atlantic ITCZ shifted southwards
during the Little lce Age and northwards
during the Medieval Warm Period
(Haug, et al, Science, 2001)



Atlantic Multidecadal Oscillation (AMO)

Proxy reconstructions of past 330 years show a 70-year mode (Delworth and Mann 2000).
Instrumental records during the 20th century also show large-scale low frequency variability in
the Atlantic SST, i.e. the AMO (Kushnir 1994; Kerr 2000). The observed AMO pattern is similar
to simulated SST anomaly induced by the low frequency AMOC variations, implying that the
AMO Index can be used to an AMOC fingerprint to reconstruct past AMOC changes (Latif et al.
2004, Knight et al. 2005).

Reconstructed multidecadal SST SST anomalies induced by AMOC variations
anomaly (Delworth and Mann 2000) (Knight et al 2005)
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Forced and natural North Atlantic variability using signal-to-noise
maximizing EOF analysis (Ting et al. 2009)
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“Aerosols Implicated as a Prime

Driver of Twentieth-Century

North Atlantic Climate Varlablllty” (Booth et al. 2012)
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The HadGEM2-ES climate model closely reproduces the observed
multidecadal variations of area-averaged North Atlantic sea surface
temperature (NASST) in the 20th century.
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The multidecadal variations simulated in HadGEMZ2-ES are primarily
driven by aerosol indirect effects that modify net surface shortwave
radiation (Booth et al. 2012).



Key Discrepancies between HadGEM2-ES Simulations and Observations
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The HadGEM2-ES simulations ShOWY%O trend in North Atlantic upper ocean
heat content, in contrast to the substantial warming trend seen in
observations. The discrepancy is mainly due to anthropogenic aerosols and
suggests that aerosol effects are strongly overestimated in HadGEM2-ES.
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Key Disct;epancies between HadGEM2-ES Simulations and Observations
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The simulated subpolar NA SSS in HadGEMZ2-ES shows an unrealistic positive
trend, mainly due to the aerosol response. The discrepancies in subpolar NA SSS

suggest aerosol effects are strongly overestimated in HadGEM2-ES.



Key Discrepancies between HadGEM2-ES Simulations and Observations
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The observed pattern is suggestive of an important role for AMOC variations, and
related variations in Atlantic heat transport. The net aerosol response in HadGEM2-ES
shows excess cooling in most ocean basins, and can not explain the observed pattern.




The Linkage Between multidecadal NASST variations and AMOC is
Highly Debated

« Some suggested that they are driven by changes in the radiative forcing
(Mann and Emanuel, 2006; Booth et al. 2012).

* Various approaches are proposed for quantitative attribution of NASST variations
to a radiatively forced part and a part arising from AMOC variability (Kravtsov and
Spannagle 2008; Ting et al. 2009; Zhang and Delworth 2009; Delsole et al. 2011;
Ting et al. 2012).

* Reconstruction AMOC variability using fingerprints are crucial for understanding
the origin and the attribution of NASST variations.



Tropical Fingerprint of AMOC variations

Observed Tropical North Atlantic (TNA) SST is anticorrelated with TNA subsurface ocean
temperature. The anticorrelation is a fingerprint of AMOC variations in coupled model
simulations, indicating observed TNA SST fluctuations may be AMOC-related (Zhang 2007).
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The weakening of the AMOC leads to a southward shift of the Atlantic ITCZ, TNA
surface cooling, and thermocline deepening and subsurface warming in the TNA
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Simulations driven by external radiative forcing changes do not generate anticorrelated

surface and subsurface TNA variations. The observed anticorrelation between TNA surface

and subsurface temperature indicates AMOC variations (Zhang 2007).



Anticorrelated TNA Surface and Subsurface Temperature
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High-resolution temperature records of the last deglacial transition from a
southern Caribbean sediment core show that warmer subsurface

temperatures correspond to colder surface temperature and weaker
AMOC during the Younger Dryas (Schmidt et al. 2012, PNAS, In Press)
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Extra-Tropical Fingerprint of AMOC variations

Observed SSH PC1 and subsurface temperature (Tsub) PC1
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The leading modes of SSH and subsurface temperature (Tsub) constitute a fingerprint of
AMOC variations, and might be used as a AMOC proxy. It indicates that during the 60’ s and
the recent decade, the AMOC was stronger, and the recent slowdown of the subpolar gyre
is a multidecadal variation (Zhang 2008).




Regressions of Tsub anomalies on the AMOC Index show similar dipole patterns, i.e. warmer
Tsub in the subpolar gyre and colder Tsub near the Gulf Stream path when AMOC is stronger.

Regression of Tsub anomalies on AMOC
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The stronger AMOC is associated with a stronger DWBC, which leads to the strengthening of
the cyclonic NRG and a southward shift of the Gulf Stream path, thus leads to cooling/
decreased SSH. The enhanced AMOC lags stronger deep convection in the Labrador Sea or
in the Nordic Sea by several years. When denser deep current propagates into south and
east of Greenland a few years later, it increases the vertical stratification thus reduces mixed
layer depth in the subpolar gyre, resulted in a weakening of the subpolar gyre and thus
warming/increased SSH.



Indirect verification using AMO
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The AMOC variations inferred from the observed Tsub PC1 are consistent with those
inferred from the observed AMO index.



Cross Correlation between the AMOC Fingerprint (Tsub PC1) and
AMOC Variations at Various Latitudes (Zhang, 2010)
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AMOC and Western Boundary Currents

Gulf Stream path and Tsub PC1
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The time series of the leading mode of the observed North Atlantic subsurface
temperature at 400m is significantly correlated (r=0.62) at 95% with the

negative of the observed GS path index at 200m (Joyce & Zhang, 2010).



Transport in NBC (Sv)

AMOC and Western Boundary Currents

AMOC and North Brazil Current (NBC)
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Zhang et al. 2001, JGR shows that a multidecadal NBC variability lags
Labrador Sea Water Thickness by a few years. The NBC transport is coherent
with the AMO. Both model and observational results suggest that the variability
of NBC transport is a good index for AMOC variations.



Nordic Sea Overflow and Subpolar Gyre

The high resolution global coupled model (GFDL CM2.5) shows that a stronger/weaker Nordic
Sea overflow leads to a contracted/expanded subpolar gyre (Zhang et al 2011), consistent with
the relationship indicated by sediment core records of the last millennium from Iceland Basin
(Moffa Sanchez et al 2011) .
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The high resolution global coupled model (GFDL CMZ2.5) shows that a
stronger and deeper-penetrating Nordic Sea overflow leads to a stronger
and deeper AMOC, a westward shift of the North Atlantic Current (NAC),
and a southward shift of the Gulf Stream, and a similar dipole pattern in
the subsurface temperature as that found in the coarse resolution model.



Summary and Future Studies

* The NASST has been shown to be a good indicator of AMOC variations
using both paleo records and climate models. However, the origin of the
20" century multidecadal NASST variations is highly debated, due to the
complication of anthropogenic forcings.

 Independent AMOC fingerprints have been identified, using variables
such as altimetry SSH, subsurface temperature, western boundary
currents, subpolar gyres, and bring new evidence that the observed
multidecadal NASST variations are indeed linked to AMOC variations
rather than merely a 20th century artifact of changes in radiative forcing.

* A high priority is to develop a multivariate fingerprint of the AMOC using
those variables that are (or have been) observed extensively or can be
reconstructed from paleoclimate archives.

* A synthesis effort is needed to evaluate currently available observations

in comparison with climate modeling results to reconstruct a longer proxy
record of AMOC variations.



