Influences of Indian Ocean dipole and Pacific recharge on following year’s El Niño: historical robustness

Takeshi Izumo1, formerly at 2, Matthieu Lengaigne1, Jérôme Vialard1, Hugo Dayan1, Jing-Jia Luo3, Toshio Yamagata2,3 and Gurvan Madec1

1IRD, LOCEAN/IPSL, France, 2University of Tokyo, Japan, 3JAMSTEC, Japan

Huge impacts of El Niño Southern Oscillation (ENSO)
Recharge-discharge mechanism [Jin 1997] of Warm Water Volume (WWV [Meinen and McPhaden 2000]) \Rightarrow ENSO predictability
But still a « spring predictability barrier » \Rightarrow Atmospheric noise, and/or something else?
Influences of Indian Ocean dipole and Pacific recharge on following year’s El Niño: historical robustness

Takeshi Izumo1, formerly at 2, Matthieu Lengaigne1, Jérôme Vialard1, Hugo Dayan1, Jing-Jia Luo3, Toshio Yamagata2,3 and Gurvan Madec1

1IRD, LOCEAN/IPSL, France, 2University of Tokyo, Japan, 3JAMSTEC, Japan

Huge impacts of El Niño Southern Oscillation (ENSO)
But still a « spring predictability barrier » => Atmospheric noise, and/or something else?
1) Introduction: IOD influence on following El Niño - mechanisms and issues

2) Construction of historical indices for IOD and WWV from the 1870s

3) Robustness and interdecadal stability of IOD and WWV influences on following El Niño
El Niño triggering by the IOD: suggested mechanism

1) Negative IOD condition in previous fall

IOD can, through variations in easterlies and related equatorial wave response in the Pacific, significantly influence next year’s ENSO.

2) Collapse of IOD in winter

IOD is a good ENSO predictor, when combined to WWV in fall (yr0):

\[
\text{ENSO}(\text{yr}+1) \sim -\text{IOD} + \text{WWV}
\]

Skill of 0.8 at one year lead over 1981-2009.

3) El Niño development in spring

Izumo et al. 2010, *Nature Geoscience*
Windstress variations in December caused by IOD eastern pole collapse, in an AGCM forced by IOD observed SST (ECHAM5, T106L31, 40 ensembles):

⇒deep convection, and so the ascending branch of the Walker circulation, is maximal over the eastern Indian Ocean in fall, the peak season for the IOD.

(agree with Annamalai et al. 2010)
Oceanic response to IOD-related wind forcing

d(Taux)/dt of AGCM exp.

Thermocline depth of the shallow water Pacific

d(SST)/dt along the eq. Pacific

Zonal current
IOD significantly affects central Pacific SST in spring (SST’ already of 0.4ºC in this uncoupled setup), mostly through zonal advection of SST, i.e. displacement of the warmpool eastern edge.
Main message:
Physically, the equatorial Pacific responds to windstress temporal variations. Shallow water model of the Pacific forced by the AGCM experiments => IOD has its strongest influence on central Pacific SST in following spring.

Atmospheric and oceanic response to IOD forcing

SST response in following Feb-March

zonal advection of SST, i.e. displacement of the eastern edge of the warmpool

In the real world with the ocean-atmosphere coupling, this would trigger the Bjerkness feedback, if WWV preconditionning is favourable
Some issues

1) Are the IOD and WWV influences on following El Niño/La Niña robust before the 1980s, and are they stable interdecadally?

2) IOD-ENSO interactions and biennality? Is Asian monsoon an active participant in it? (Webster and Hoyos 2010)

3) Which types of ENSO are the IOD and WWV predictors of? Can we use IOD and WWV to improve one year-lead climate predictability globally, thanks to El Niño global teleconnections?

Webster and Hoyos 2010
News&Views, Nature Geoscience
1) Introduction: IOD influence on following El Niño - mechanisms and issues

2) Construction of historical indices for IOD and WWV from the 1870s

3) Robustness and interdecadal stability of IOD and WWV influences on following El Niño
Outline

1) Introduction: IOD influence on following El Niño - mechanisms and issues

2) Construction of historical indices for IOD and WWV from the 1870s:

 ENSO: reconstructed indices Niño3.4 (and ESOI) of Bunge and Clarke [2009] => reliable

 IOD: too many SST gaps to use the DMI
 => improvement through spatial regression: IOD\textsubscript{hist} based on HadiSST (idem with HadSST2 and ERSSTv3b)
 => reliable

 WWV: insufficient historical subsurface obs. => need of a proxy
Main starting idea:

WWV interannual variations forced by equatorial zonal windstress (τ_x):

$$d\text{WWV}/dt = -r\text{WWV} - \alpha \tau_x \approx -\alpha \tau_x$$ [Jin (1997a,b), Burgers et al. (2005)]

\Rightarrow WWV estimated as the temporal integral of τ_x

\Rightarrow Construction of a WWV_{hist} historical proxy using windstress from 20th Century atmospheric reanalysis (1871-2008)

\Rightarrow Good comparison with modern observations (correl. 0.87):

WWV hist compared to observed WWV
1) Introduction: IOD influence on following El Niño - mechanisms and issues

2) Construction of historical indices for IOD and WWV from the 1870s

3) Robustness and interdecadal stability of IOD and WWV influences on following El Niño
Robustness of IOD and WWV influences on following year’s El Niño during the 1870s-2000s period

Observed value (yr1): \(\text{Nino34}_{\text{yr1}} \)

Predictor (yr0): \(\text{iOD}_{\text{hist}} + \text{WWV}_{\text{hist}} \)

\(\text{(decadal and trends removed)} \)

\(\Rightarrow \) good symmetric skill of \(-\text{IOD} + \text{WWV}\) to hindcast El Niño/La Niña events one year in advance
Robustness of IOD and WWV influences on following year’s El Niño during the 1870s-2000s period

Observed Niño3.4_{hist} (NDJ) and its hindcast using –IOD_{hist} + WWV proxy with a ~1 year lead

=> good symmetric skill of –IOD+WWV to hindcast El Niño/La Niña events one year in advance

Correlation skill: 0.72
Interdecadal variations of IOD and WWV influences on ENSO?

One-year lead correlations with ENSO, in a 30 years sliding window

Historical observations

⇒ Significant partial correlations of IOD and WWV with following year’s ENSO

⇒ Good and stable skill of –IOD+WWV hindcast regression (with some interdecadal variations in the relative contributions of IOD and WWV)
Interdecadal variations of IOD and WWV influences on ENSO?

One-year lead correlations with ENSO, in a 30 years sliding window

Historical observations

SINTEX-F CGCM

⇒ Significant partial correlations of IOD and WWV with following year’s ENSO

⇒ Good and stable skill of −IOD+WWV hindcast regression (with some interdecadal variations in the relative contributions of IOD and WWV)

⇒ Robustness in the CGCM also

⇒ Validation of the WWV proxy method)
Testing other suggested predictors of following year’s ENSO

Multiple regression for hindcasting next ENSO (NDJ0) using IOD$_{hist}$, WWV$_{hist}$ and a 3rd predictor shown below:

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Regression coefficient for IOD (SON-1)</th>
<th>Regression coefficient for WWV (SON-1)</th>
<th>Skill of multiple regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian Ocean basin-wide warming/cooling (IOBW in JFM 0)</td>
<td>-0.34±0.15</td>
<td>0.58±0.10</td>
<td>0.72</td>
</tr>
<tr>
<td>ENSO (NDJ-1)</td>
<td>-0.49±0.15</td>
<td>0.55±0.11</td>
<td>0.72</td>
</tr>
<tr>
<td>Indian summer monsoon (All Indian Rainfall in JJAS-1)</td>
<td>-0.40±0.11</td>
<td>0.57±0.10</td>
<td>0.72</td>
</tr>
</tbody>
</table>

=> IOD influence: not a statistical artefact of the “biennial nature of El Niño”

=> Indian summer monsoon: not a precursor of following year’s El Niño => probably not an active participant in IOD-ENSO interactions and biennality
Partial correlation of SST in winter with previous year’s –IOD or WWV, for:

« high-freq » HF band (2-3 years)
« low-freq. » LF band (3-7 years)

- IOD
- IOD

=> IOD brings predictability for the HF band of ENSO (i.e. for year to year transitions, « biennality »), while WWV brings also predictability for the LF part of ENSO (> 3 yrs).
IOD-ENSO interactions could be crucial to the tropospheric tropical biennial tendency (TBO; Meehl et al. 2003, Kug et al. 2006) and interfere with the slower Pacific WWV recharge
Which types of ENSO do IOD and WWV favour?

Skill of $-\text{IOD}+\text{WWV}$ regression to hindcast following year’s winter SST

\Rightarrow skill for Nino4: 0.7; for Nino3: 0.7; weaker skill for Nino1+2: 0.6

<table>
<thead>
<tr>
<th>Hindcast scores for various indices and ENSO types, using</th>
<th>Partial correl. of IOD$_{reg}$ (without WWV)</th>
<th>Partial correl. of WWV (without IOD)</th>
<th>Correl. skill of IOD+WWV hindcast model</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNino3.4</td>
<td>-0.55</td>
<td>0.64</td>
<td>0.72</td>
</tr>
<tr>
<td>-D_ESOI</td>
<td>-0.53</td>
<td>0.62</td>
<td>0.69</td>
</tr>
<tr>
<td>Nino_c (central Pac.)</td>
<td>-0.49</td>
<td>0.61</td>
<td>0.68</td>
</tr>
<tr>
<td>Nino_e (extreme east)</td>
<td>-0.19</td>
<td>0.41</td>
<td>0.43</td>
</tr>
<tr>
<td>EMI (Modoki)</td>
<td>-0.41</td>
<td>0.44</td>
<td>0.55</td>
</tr>
</tbody>
</table>

\Rightarrow skill of $-\text{IOD}+\text{WWV}$ maximal for central-east Pacific SST, and thus for typical ENSO events. Skill significant for all ENSO indices, but weaker for Nino$_e$ index (« extreme east » character of El Nino, as defined by Takahashi et al. 2011), whose skill mostly comes from WWV.

\Rightarrow IOD influences mostly one dimension of the Pacific PC1/PC2 space, the Nino$_c$ one.
Potential predictability brought by -IOD and WWV predictors for historical precipitation (GPCC, 1901-2008, color on land) and SLP (ICOADS, color on sea; 20CR, black contours)

Correlation of land precipitation and sea level pressure in NDJFM:

- a) with simultaneous ENSO
- b) with the ENSO hindcast based on previous year’s -IOD and WWV

=> Significant hindcast with a one-year lead of rainfall and SLP global patterns, thanks to ENSO teleconnections (e.g. skill of 0.46 for central-northwest America)
Mechanism: the IOD can influence ENSO triggering, mainly through zonal advection and central Pacific SST’.

Construction of reliable historical indices IOD\textsubscript{hist} and WWV\textsubscript{hist} (available online) \(\Rightarrow\) useful for historical studies.

Robustness of IOD (~40\%) and WWV (~60\%) influences on next year’s El Niño/La Niña throughout the 1870s-2000s period \(\Rightarrow\) interdecadally stable skill

IOD and ENSO interactions \(\Rightarrow\) biennial tendency (passive Indian monsoon?) + slow WWV recharge-discharge cycle

\(\Rightarrow\) the Indo-Pacific “ocean”: “one” ocean-atmosphere system for ENSO?

IOD mostly predictor of ENSO transitions for classical moderate ENSO with classical teleconnections, the Nino_c dimension of the Pacific PC1/PC2 space. WWW also a predictor for the Nino_e one, at least in observations.
Still many questions to answer, and half of the ENSO variance unexplained…:

- Influences of IO and WWV on ENSO types, HF/LF parts…
- Bienniality/TBO: needs further obs./GCM studies
- Interdecadal variations: stochastic and physical parts?
- Interactions with the Atlantic (e.g. Rodriguez-Fonseca et al. 2009, Ding et al. 2012, Ham et al. 2013)? secondary complementary role, as suggested by M. Watanabe (2008a,b)?

=> a need to better understand and quantify the Indian Ocean - Pacific –Atlantic interactions, through both models and a sustained observational network for the tropical coupled ocean-atmosphere system (e.g. TAO/TRITON array…).