2012 AMOC PI Meeting

Comparison of Decadal AMOC Variability Among Climate Models Barry A. Klinger and Oluwayemi A. Garuba

George Mason University, AOES Dept., Fairfax, VA, USA, and Center for Ocean-Land-Atmosphere Studies (COLA), Calverton, MD, USA

Motivation and Goal: Numerous studies of Atlantic Meridional **Overturning (AMOC) decadal variability show quantitatively** and qualitatively different behavior in different models. How different is behavior when same analysis is performed on a set of CMIP3 preindustrial control runs?

All models show deep Φ anomalies indicating thermohaline effects

But note signs of Ekman response in MRI-ECHAM5

Evolution of anomaly assoc-

Examine 8 runs, time-mean overturning maximum ranging from 11 to 23 Sv.

Define "index" time series of decadal variability: stream function Φ anomaly at location (latitude, depth) of maximum Filtered Φ variability in 30-60N and below 300 m (filter described below).

Variability is substantial for all models on decadal time scales, but relatively strong interannual for CNRM and MRI and relatively strong lower-frequency for CCSM and CCCMA.

iated with 1st two EOFs (not shown)

Dong and Sutton (2005, J. Clim.) found that top 500m of subpolar region denser than average for a few years before peak overturning anomaly in decadal variability. True for other models?

Filter data to isolate decadal: 3 yr running mean – 61 yr running mean.

Φ index standard deviation: .5 - 1.8 Sv Period (between negative lobes of index autocorrelation): 10- 25 yr (+ 55 yr CCMA_T63) (std index)/(avg max Φ): .033 - .10

Use maps of fields regressed on to index function to portray "average" cycle. Lat-time maps of Φ at depth of index function show:

Hard to tell because

 not single sign density anomaly in entire Deep-Water-Formation region • not clear if should compare phase of index or larger-scale measure of Φ

However...

High-latitude predominantly dense ¹/₄ cycle before max value of Φ index for all models except CSIRO.

This could be immediate driving mechanism for Φ variability.

-61 filtered density against msfA, average over 500m, lat=50 -60 and lon=280 -380

• peak magnitude near 45° N disturbance propagates southward

 reaches into southern hem propagation time O(5 yr)

Why so long?

Conclusions: Decadal AMOC variability (10-20 yr period, .5-2 Sv RMS) is robust feature of climate models. **Overturning patterns and maybe density mechanism are** common to most models.

The authors gratefully acknowledge support from NSF grant 0830068, NOAA grant NA09OAR4310058 and NASA grant NNX09AN50G.

Contact: <u>klinger@cola.iges.org</u>, http://mason.gmu.edu/~bklinger