Dynamical downscaling of tropical cyclone activity: an update on the use of the GFDL hurricane model for Atlantic projections and expansion to multiple basins

Hurricane Katrina, Aug. 2005

Tom Knutson

Geophysical Fluid Dynamics Lab/NOAA Princeton, New Jersey, USA

June 2013

http://www.gfdl.noaa.gov/~tk

Contributors: Joe Sirutis Gabe Vecchi Morris Bender Bob Tuleya Isaac Held Gabriele Villarini Ming Zhao Hyeong-Seog Kim Steve Garner

GFDL model simulation of Atlantic hurricane activity

A strategy for obtaining more confident future projections of tropical cyclone activity

- Is there a detectable past human influence on tropical cyclone activity? If so → confidence increases in projections...
- Can our models simulate characteristics of present-day tropical cyclone activity and its variability?
- How robust are downscaling projections to the use of different models? CMIP3 or CMIP5 models? Downscaling model?

Normalized Tropical Atlantic Indices - Hurricane Focus

Global Mean Temperature

Tropical Atlantic Temp.

Raw Hurricane Counts

Adjusted Hurricane Counts

U.S. Landfall. Hurricanes

Atlantic Temp. Relative to Tropical Temp.

Two GFDL models reproduce the interannual variability of Atlantic hurricane counts; trend in NCEP reanalysis-forced ZETAC model is too large

GFDL HIRAM 50km grid global model (SST-forced):

Simulated vs Observed Tropical Storm Tracks (1981-2005)

Atlantic Hurricanes (1980-2008): ZETAC-Simulated vs. Observed

ZETAC regional model: forced by NCEP Reanalysis

Sources: Knutson et al., 2007, Bull. Amer. Meteor. Soc.; Zhao et al., 2009, J. Climate

Changes in Tropical Storm Frequency: Zetac Regional Model (18 km grid)

Source: Knutson et al., 2013. J. Climate (in press)

Changes in Storm Frequency: Zetac Regional Model (18 km grid)

Hurricanes (1-5)

A "double-downscaling" approach for modeling the frequency of intense Atlantic hurricanes. Bender et al., *Science*, 2010.

The GFDL Operational Hurricane Prediction System simulates a realistic distribution of Atlantic TC intensities in both operational and climate mode...

Source: Bender et al., Science 2010.

Black solid: Control Runs Red solid: CMIP3 ensemble

Source: Knutson et al. 2013, J. Climate, in press

N. Atlantic Tropical Storms: GFDL/GFDN Hurricane Model normalized histograms of max wind

Source: Knutson et al. 2013, J. Climate, in press

N. Atlantic Tropical Storms: GFDL/GFDN Hurricane Model

Mon Jul 9 13:36:10 2012

Source: Knutson et al. (J. Climate, in press, 2013).

Relative SST-based statistical model describes Atlantic basin projected tropical storm changes fairly well:

Source: Knutson et al. (J. Climate, in press, 2013).

Statistical downscale vs. dynamical downscale of intensity

Source: Knutson et al. (J. Climate, in press, 2013).

GFDL Hurricane Model: Category 4 & 5 Hurricane Tracks (27 years)

CONTROL - 14 storms

Source: Knutson et al. (J. Climate, in press, 2013).

CMIP5_EARLY - 20 storms

TC Precipitation Rate Projections: Assessment of robustness

Source: Knutson et al. J. Climate, in press, 2013.

Source: Knutson et al. (J. Climate, in press, 2013).

GFDL2012e (with synthetic vortex replacement) GFDL2012f (no replacement; uses C180 vortex)

<u>Model:</u> GFDL2012e

with synthetic initial vortex, but no T or RH adjustment;

Downscale of Tropical Storms in GFDL C180 (50 km GCM)

<u>Model:</u> GFDL2012f

no synthetic initial vortex, and no T or RH adjustment;

Downscale of Tropical Storms in GFDL C180 (50 km GCM)

Black = Observed distribution (JTWC for W. Pac and NIO)

Atlantic TC projections for late 21st century:

<u>Tropical storm frequency</u>: In the Atlantic, GFDL downscaling approaches support a reduced frequency (~-25%, range 0 to -50%)), but the projected range is even wider across a range of studies (-70% to +40%). Relative SST statistically describes this variation across dynamical model projections fairly well ($r^2=0.55$).

Hurricane intensity: Our models simulate about 5% increase in lifetime maximum intensity (range -4 to +11%).

<u>Frequency of intense hurricanes:</u> does not behave like overall TC frequency. Our model projects +87% for CMIP3 (range -90 to +240%); for CMIP5 it projects +45% (Early 21st) and +39% (Late 21st) though only marginally significant.

<u>Tropical cyclone precipitation:</u> robust increase in rate in model projections. Simulated increase is at a rate expected from Clausius-Clapeyron (total water vapor) or about +11% at 200-400 km radius, but with higher percentage increase (~+30%) closer to the storm center (50-150km). For 100 km radius the range of changes across the models was: -3 to +38%.