

Joint Weather and Climate Research Programme

A partnership in weather and climate research

Tropical cyclones in present and future climates in a hierarchy of model resolutions

Pier Luigi Vidale, Marie-Estelle Demory, Reinhard Schiemann

+ NCAS-Climate, University of Reading

Talk plan

- UPSCALE project
 - Tropical cyclone properties
 - present day and future timeslice climate
- HWG experiment results
- Conclusions

Joint Weather and Climate Research Programme

The PRACE-UPSCALE Project

UK on PRACE - weather resolving Simulations of Climate for globAL Environmental risk Current "numerical mission" of the JWCRP High-resolution climate modelling team PI: P.L. Vidale, NCAS-Climate, Reading

In 2011 we demonstrated our capability in effectively exploiting 4'800, and up to 12'000 CRAY XE6 cores. As an ensemble of GCMs, we could **concurrently use up to 60'000 cores.**

Completed:

1.HadGEM3-A multi-decadal simulations at N96 (130 km) to N512 (25 km) 85 levels to 85km GA3.0 config (Walters et al, 2011)

- present climate simulations N96 and N512
 - •forced with OSTIA SSTs 1985-2011
 - •5 ensemble members, 27 years each
- •future climate simulations at N512
 - •3 ensemble member, 27 years each
 - •following RCP8.5
 - •SST: daily OSTIA + HadGEM2-ES RCP8.5 2100 Δ SST (global av \sim 4K)

Met Office Hadley Centre

Tropical storm tracking: TRACK

• Tropical storms are

- Tropical storms are located and tracked in GloSea5 using TRACK (Hodges, 1996).
- Tracking: maxima in 850 hPa relative vorticity on common T42 grid
- Minimum 2 day lifetime
- Includes check for a warm core.
- Exactly the same algorithm used in all of the following (no tuning)
- Obs HURDAT + JTWC mainly compared model to observed hurricanes

Mean sea level pressure 00:00 04 August 2002

999 1002 1005 1008 1011 1014 1017 1020 1023 hPa

Tracking regions

NMENT CH COUNCIL

limate

Standard deviation indicated by line

Research Frogramme

Normalised NH basin counts – 1986-2010

NMENT CH COUNCIL

limate

Research Programme

Mean SH basin counts – 1986-2010

NMENT CH COUNCIL

limate

Research Programme

Track density from model ensembles and observations

imate

Model Tropical Storm Track Density

Global, 5n512 N512, 1986-2010

Total tropical storms 4798

0.20

0.05

0.40

0.75

Storm transits per month

1.25

1.75

3.00

Track density – Met Office Met Office Met Office Joint Weather and Climate A partnership in climate research A partnership in climate research

Track Density: N512 Timeslice - present day 3n512_TS N512, 1986-2010

Solid line = ensemble mean, shading = ensemble range

African Easterly wave properties at N96, N216 and N512 resolutions

TC correlations (1985-2011) vs **HURDAT**

Joint Woathor and Clim				
Resolution Basin	N96 (5 member)	N216 (3 member)	N512 (5 member)	Reanalyses
Atlantic	0.57, 0.58, 0.47, 0.37, 0.38 (0.60)	0.56, 0.67, 0.41 (0.64)	0.65, 0.67, 0.57, 0.57, 0.69 (0.76)	0.78, 0.88, 0.89 (0.9)
W Pacific	0.58, 0.57, 0.58, 0.58, 0.51 (0.71)	0.7, 0.52, 0.62 (<mark>0.74</mark>)	0.45, 0.49, 0.53, 0.42, 0.44 (0.60)	0.4, 0.54, 0.57 (0.69)
E Pacific	0.35, 0.29, 0.04, 0.34, 0.14 (0.3)	0.34, 0.47, 0.34 (0.5)	0.28, 0.34, 0.4, 0.2, 0.21 (0.33)	0.02, 0.56, 0.26 (0.51)
Indian	0.05, -0.16, -0.34, -0.06, -0.07 (-0.17)	0.08, -0.02, -0.16 (-0.12)	0.31, -0.34, -0.36, -0.44, -0.11 (-0.34)	0.29, 0.39, 0.39 (0.4)

NH tropical cyclone intensity (wind speed vs MSLP) for (top) 10m wind

(bottom) 925hPa winds

(HURDAT is 10m in both)

Joint Weather and Climate Research Programme

A partnership in climate research

Composite structure from 10 strongest storms at peak – crosssection of wind speed from N96, N216 and N512 models

Joint Weather and Climate Research Programme

A partnership in climate research

Composite structure from 10 strongest storms at peak – crosssection of temperature anomaly from N96, N216 and N512 models

100

Composite structure from 10 strongest storms at peak – precipitation from N96, N216 and N512 models

150

250

400

mm/day

10

30

50

Joint Weather and Climate Research Programme

A partnership in climate research

Composite structure from 10 strongest storms at peak – crosssection of wind speed from

(top) N512 present day and

(bottom) N512 timeslice

Joint Weather and Climate Research Programme

A partnership in climate research

Composite structure from 10 strongest storms at peak – crosssection of wind speed from N512 present day and N512 timeslice

Composite TC for 3n512(N512) Total rainfall

Composite TC for 3n512_TS(N512) Total rainfall

Joint Weather and Climate Research Programme

A partnership in climate research

Composite structure from 10 strongest storms at peak – precipitation from N512 present day and N512 timeslice

mm/day

Track density difference: Nino - Nina

1 COUNCIL

Joint Weather and Climate Research Programme

Tropical Storm Track Density Nino - Nina

Total tropical storms: 999

5n512 N512, 1986-2010

HURDAT obs 1986-2010

Model N96_xhqin tropical storm crossings by US state
June-November 1985-2011

Model N512_xgxqe tropical storm crossings by US state June-November 1985-2011

Observed tropical storm crossings by US state June-November 1985-2011

Model N96_xhqin US tropical storm crossings June-November 1985-2011

Model N512_xgxqe US tropical storm crossings June-November 1985-2011

Joint Weather and Climate Research Programme

A partnership in climate research

Observed US tropical storm crossings June-November 1985-2011

Total tropical storms: 101

Model ERAI_erai tropical storm crossings by US state
June-November 1989-2011

Observed tropical storm crossings by US state June-November 1989-2011

HWG experiments

Joint Weather and Climate Research Programme

- Little analysis done
- Only 8-10 years with higher resolution models

HWG experiments NH basin mean

Joint Weather and Climate Research Programme

HWG experiments SH basin mean

Joint Weather and Climate Research Programme

Tropical Storm Track Density

2xCO2 - Ctl N96, 1979-1999

SST - Ctl N216, 1979-1987

2xCO2 - Ctl N216, 1979-1987

SST - Ctl N320, 1980-1986

-0.5

-0.1

Storm transits per month

0.1

0.5

-2.0

2xCO2 - Ctl N320, 1980-1986

2.0

Joint Weather and Climate Research Programme

Summary

Joint Weather and Climate Research Programme

- General improvements at higher resolution
 - Increase in storm numbers, and slightly improved interannual correlations, particularly in Atlantic
 - US landfalling storm distribution dependent on model resolution
 - due to genesis position mainly?
- Common errors
 - Too many SH storms
 - Weak intensities
 - Too few landfalling storms in N Atlantic
- HWG experiments
 - No significant change in numbers of storms at any resolution
 - Track density changes variable

Future/ongoing work

Joint Weather and Climate Research Programme

- Further analysis of UPSCALE and HWG experiments
 - Understanding sensitivities to resolution/forcing
- Work with improved dynamical core (ENDGame)
 - Indications of some significant improvements at low resolution, high resolution ongoing
- Understand weak intensity of storms
 - PhD student working on this

Difference in surface temperature Timeslice – present day Joint Wea

Joint Weather and Climate Research Programme

