At each step (every ten days) calculate a salinity flux for each segment of the 26°N section (shown above), using:

- salinity and transports from the 26°N mooring array.
- salinity and density (for geostrophic calculations) from Argo data optimally interpolated on density using Hydrobase climatology.

Components of the Freshwater Flux

The salinity across 26°N is split into overturning and horizontal components. Each component is associated with zero net mass flux. The salinar flux is separated from the overturning flux by compensating it with the section average salinity.

Comparison with other estimates

The mean from our estimate of the freshwater divergence (-0.33 Sv) is compared to integrated surface flux climatologies and reanalyses (continuous lines) and estimates from hydrographic sections (symbols).

Bering Strait considerations

We use the mean transport through Bering Strait as our constraint. What effect does the seasonal variability in the Bering Strait flow have?

Acknowledgements

This work was funded by MOPAC, a NERC RAPID-WIN initiative. Data from the RAPID-MOCHA project are funded by the National Environmental Research Council (NERC) and National Science Foundation (NSF) and are freely available from www.nerc.ac.uk and www.nsf.gov.

Argo data were collected and made freely available by the International Argo Project and the national programs that contribute to it (http://www.argo.ucsd.edu).

Hydrobase climatology, funded by NERC, is made available by Ruth Curry, WHOA.