On the stochastic null hypothesis for Atlantic multidecadal variability

Jennifer Mecking¹

Noel Keenlyside², Richard Greatbatch¹

1: Helmholtz Centre for Ocean Research Kiel (GEOMAR)

2: Geophysical Institute, University of Bergen

17.07.2013

Motivation a) AMV index 0.5 Temperature anomalies (°C) 0.25 0 -0.25 -0.5 1840 1860 1880 1900 1920 1940 1960 1980 2000 b) NAO index (DJFM) 2 ſ -2 -4 1840 1880 1900 1860 1920 1940 1960 1980 2000

Dynamical interest:

- Separate anthroprogenic and natural variability
- Predictability

Questions?

- Can a stochastic, white noise NAO excite decadal to multidecadal ocean variability?
- How does North Atlantic ocean variability depend on the history of the NAO forcing?

Questions?

- Can a stochastic, white noise NAO excite decadal to multidecadal ocean variability?
- How does North Atlantic ocean variability depend on the history of the NAO forcing?

Strategy

- Analyze ocean model integrations driven with the COREv2 forcing and forcing based on the NAO
- Analyze an ocean model integration forced with a white noise NAO – the stochastically-forced integration

Outline

- Model and experiments
- Stochastically-forced integration results
 - SPG Strength and AMOC
 - Reconstruction of AMOC index
 - Integrating the NAO
 - Auto-regressive processes
- Results

Ocean Model Description

- NEMO 3.1, ORCA05, global domain with 0.5°x0.5° horizontal resolution, 46 vertical levels, interactive sea-ice
- Atmospheric forcing: 10 m air temperature, 10 m winds, humidity, radiation and precipitation from COREv2,
 - fluxes computed by NEMO
- Salinity restored to Levitus with a time scale of 1/2 year

Maximum Mixed Layer Depth

Experimental Setup

- NAO forcing based Eden & Jung 2001:
- Regression of observed monthly NAO (Gibraltar – Iceland) onto COREv2 forcing data (1948-2006)
- NAO anomalies reconstructed for 1826-2010 then added to normal year forcing on a monthly basis
 - Strongest forcing during winter

10 m Temperature and Wind Regression Patterns Cold Months (ONDJFM)

Model Integrations

Spin-up for 725 years using climatological forcing (normal year forcing) from COREv2

Model Integration	Short Name	Years	Description
Fully-Forced	FF	1948-2007	complete COREv2 forcing
NAO-Forced	NF	1826-2010	normal year forcing plus anomalies based on the observed NAO
Stochastically- Forced	SF	2000 years	normal year forcing plus anomalies from the stochastic NAO

- FF & NF: Integrated twice to avoid 'shocking' the system
- SF: first 150 years omitted from analysis

Model Integrations

Spin-up for 725 years using climatological forcing (normal year forcing) from COREv2

Model Integration	Short Name	Years	Description
Fully-Forced	FF	1948-2007	complete COREv2 forcing
NAO-Forced	NF	1826-2010	normal year forcing plus anomalies based on the
			ODSERVED NAD
Stochastically- Forced	SF	2000 years	normal year forcing plus anomalies from the stochastic NAO

- FF & NF: Integrated twice to avoid 'shocking' the system
- SF: first 150 years omitted from analysis

Stochastically-forced Integration

Stochastic NAO is white-noise by construction

Stochastically-forced Integration

- Stochastic NAO is white-noise by construction
- The white-noise NAO index has some clear structure

Mean AMOC

Atlantic Meridional Overturning Circulation (AMOC) 30°N: Maximum of annual mean Meridional Overturning Circulation at 30°N 8

Mean Barotropic Streamfunction

Subpolar Gyre (SPG) Strength: Negative area average of annual mean barotropic streamfunction in the region 48° to 65°N, 60°W to 15°W 8

Wavelet

• 2000 year long highly resolved ocean only model integration forced with a white noise NAO index

- 2000 year long highly resolved ocean only model integration forced with a white noise NAO index
- Low frequency ocean variability is enhanced and is a reflection of timescales in the forcing data
 supporting results in Delworth & Greatbatch 2000
 no single period of oscillation excited

- 2000 year long highly resolved ocean only model integration forced with a white noise NAO index
- Low frequency ocean variability is enhanced and is a reflection of timescales in the forcing data
 supporting results in Delworth & Greatbatch 2000
 no single period of oscillation excited
- The AMOC at 30°N shows enhanced variability on timescales longer than approx. 86 years while the SPG strength has enhanced variability on timescales longer than approx. 15 years.

AMOC and the NAO

How does the AMOC at 30°N depend on the past history of the winter NAO?

Integrating the NAO

$$AMOC(t) = \alpha_0 + \sum_{k=1}^{q} \alpha_k NAO(t-k+1) + \xi(t)$$

• The α_k 's are computed using linear regression

Integrating the NAO

$$AMOC(t) = \alpha_0 + \sum_{k=1}^{q} \alpha_k NAO(t-k+1) + \xi(t)$$

• The α_k 's are computed using linear regression

- 53 coefficients required in our calculations
 - Implying an approx.
 53 year adjustment time to the forcing

AMOC and Integrated NAO

AMOC and Integrated NAO

15 year high-pass filtered

Integrated NAO reconstruction of AMOC 30°N

period (years)

AMOC and Integrated NAO

15 year low-pass filtered

Integrated NAO reconstruction of AMOC 30°N

period (years)

AR Representation of AMOC?

- Requiring 53 years of NAO data is not ideal for predictions!
- This suggests considering an AR process to reconstruct the AMOC

$$AMOC(t) = \sum_{h=1}^{p} \phi_h AMOC(t-h) + w(t)$$

- Coefficients, ϕ_{h} , are computed using the Yule-Walker equations

AR Representation of AMOC

- Results from a Stochastic NAO forced ocean model produce different types of signals on different timescales
 - No clear preferred frequency of variability is present

- Results from a Stochastic NAO forced ocean model produce different types of signals on different timescales
 No clear preferred frequency of variability is present
- Integrating NAO index can reproduce model AMOC at 30°N from the Stochastically-forced model integration using 53 years of the NAO index
 - → Similar to Ortega et al. 2001

- Results from a Stochastic NAO forced ocean model produce different types of signals on different timescales
 No clear preferred frequency of variability is present
- Integrating NAO index can reproduce model AMOC at 30°N from the Stochastically-forced model integration using 53 years of the NAO index
 - → Similar to Ortega et al. 2001
- Similar results apply to the SPG strength, however only requires 10 years of the NAO for a similar correlation

- Results from a Stochastic NAO forced ocean model produce different types of signals on different timescales
 No clear preferred frequency of variability is present
- Integrating NAO index can reproduce model AMOC at 30°N from the Stochastically-forced model integration using 53 years of the NAO index
 - → Similar to Ortega et al. 2001
- Similar results apply to the SPG strength, however only requires 10 years of the NAO for a similar correlation
- The AMOC at 30°N (SPG Strength) does not satisfy an AR(1) process
 - → Best fit for the AMOC at 30°N is an AR(7) process
 - → Best fit for the SPG Strength is an AR(5) process