Uncertainties in future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments

Hiroyuki Murakami (University of Hawaii/MRI)

Murakami et al. (2012, Clim. Dyn.)

Outline

- Motivation
- Methodology for multi-physics and multi-SST ensemble experiments
- Results
- Summary

20 km-mesh grids

Motivation

Uncertainty due to prescribed SSTs

Uncertainty due to model physics

Emanuel et al. (2008, BAMS)

Different future SST causes different sign of projected changes in TC genesis number in a specific basin.

Murakami et al. (2012, J. Climate)

Different cumulus convection scheme causes different sign of projected changes in TC frequency of occurrence in a specific basin.

Which of SST or cumulus convection scheme causes uncertainty largely? A key factor is to derive robust signals across different exp. settings.

Multi-model & Multi-SST Ensemble Projections using 60km-mesh model

•Using 60-km-mesh MRI-AGCM, 12 ensemble future (2075-2099) experiments were conducted.

3 (cumulus) \times 4 (SST) = 12 ensemble experiments

Abbreviation	Cumulus Convection Scheme	Prescribed Future SST
Y0	Yoshimura Scheme (YS)	18 CMIP3 Models Ensemble Mean
Y1	Yoshimura Scheme (YS)	Cluster 1
Y2	Yoshimura Scheme (YS)	Cluster 2
Y3	Yoshimura Scheme (YS)	Cluster 3
K0	Kain-Fritsch Scheme (KF)	18 CMIP3 Models Ensemble Mean
K1	Kain-Fritsch Scheme (KF)	Cluster 1
K2	Kain-Fritsch Scheme (KF)	Cluster 2
K3	Kain-Fritsch Scheme (KF)	Cluster 3
A0	Arakawa-Shubert Scheme (AS)	18 CMIP3 Models Ensemble Mean
A1	Arakawa-Shubert Scheme (AS)	Cluster 1
A2	Arakawa-Shubert Scheme (AS)	Cluster 2
A3	Arakawa-Shubert Scheme (AS)	Cluster 3
YG	Yoshimura Scheme (YS)	1.83K uniform warming

Three types of physics used for multi-physics exp.

	MRI-AGCM 3.2 AS	MRI-AGCM 3.2 KF	MRI-AGCM 3.2 YS		
Horizontal resolution	T _L 319 (60km)				
Vertical resolution	64 levels (top at 0.01hPa)				
Time integration	Semi-Lagrangian				
Time step	20 minutes				
Cumulus convection	Prognostic Arakara–Schubert	Kain-Fritsch	Yoshimura (Tiedtke-based)		
Cloud	Tiedtke (1993)				
Radiation	JMA (2007)				
GWD	Iwasaki et al. (1989)				
Land surface	SiB ver0109 (Hirai et al.2007)				
Boundary layer	MellorYamada Level2				
Aerosol (direct)	5 species				
Aerosol (indirect)	No				

Time Slice Experiments

Multi-SST Ensemble Projections

Fractional SST change relative to tropical mean change in CMIP3 models under A1B scenario.

Multi-SST Ensemble Projections

Multi-SST Ensemble

Performance of control simulations

whereas AS has pronounced biases.

Future changes in TC number [%]

Y: Yoshimura, K:Kain-Fritsch, A: Arakawa Shubert 0: CMIP3 mean SST, 1:Cluster 1, 2:Cluster 2, 3: Cluster 3, G: Global uniform GL NH SH 100 ALL Std.= 9.3 SST Std.= 8.3 ALL Std.= 7.5 SST Std.= 4.4 ALL Std.= 4.8 SST Std.= 4.4 80 MDL Std.= 3.1 MDL Std.= 6.6 MDL Std.= 7.8 60 40 20 Generally, statistically significant decreases • • • -20 ŦŦŦ -40 -60 in the WNP, SIC, and SPO. -80 -100 Y0 Y1 Y2 Y3 K0 K1 K2 K3 Statistically significant decreases K1 K2 K3 A0 A1 A2 A3 YG ENP NIO 100 in global and hemispheric scales ALL Std.=18.6 SST Std.=11.0 80 MDL Std.=20.9 60 Difference in SST 40 (by about 20 causes larger variances -20 -40 rather than model -60 -80 -100 Y0 Y1 Y2 Y3 K0 K1 K2 K3 A0 A1 A2 A3 YG Y0 Y1 Y2 Y3 K0 K1 K2 K3 A0 A1 A2 A3 YG physics. NAT SIO 100 ALL Std.=19.1 ALL Std.=10.5 SST Std.=10.5 SST Std.=14.5 SST Std.= 9.1 MDL Std.=11.2 80 MDL Std.=16.7 MDL Std.= 4.7 60 40 20 20-C -20 -40 -40 -60 -60 -80 -100 100 Y0 Y1 Y2 Y3 K0 K1 K2 K3 A0 A1 A2 A3 YG Y0 Y1 Y2 Y3 K0 K1 K2 K3 A0 A1 Y0 Y1 Y2 Y3 K0 K1 K2 K3 A0 A1

Future changes in TC frequency of occurrence and TC genesis frequency

Future changes in TC genesis frequency and SST anom.

Future changes in TC genesis frequency and SST anom.

[number/25-year] and sea surface temperature anomaly (S_a , contours) [K] relative to tropical (30°S-30°N) mean.

Projected future changes in TC genesis frequency are relatively independent of the chosen cumulus convection scheme.

Responsible factor for inter-experimental variance

[%]

Difference in SSTs causes substantial inter-experimental variance in projected changes in TC genesis number.
North Indian Ocean, North Atlantic, and South Pacific show substantial variance caused by difference in the cumulus convection schemes.

Conclusion

- In order to evaluate uncertainties, we conducted multi-SST and multi-model ensemble projections.
- (a) Every ensemble simulation commonly shows decrease in global and hemispheric TC genesis numbers by about 5-35% under the global warming environment regardless of the difference in model cumulus convection schemes and prescribed SSTs.
- (b) All experiments tend to project future decreases in the number of TCs in the western North Pacific (WNP), South Indian Ocean (SIO), and South Pacific Ocean (SPO), whereas they commonly project increase in the central Pacific.

(c) Future changes in spatial distribution of SST are major source of uncertainty in terms of future changes in TC genesis. Further SST ensemble experiments may be necessary for minimizing uncertainty. Thank you

Summary of statistical analysis

Spatial variation in SST is a source of uncertainty in projecting future changes in TC genesis frequency through responses of dynamical factors. Further SST ensemble experiments are necessary to minimize those uncertainties.

Reference

Murakami, H., and co-authors, 2011: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. *J. Climate, revised*.

Murakami, H., R. Mizuta, and E. Shindo, 2011: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using 60-km mesh MRI-AGCM. *Clim. Dyn.* In press.

Murakami, H., B. Wang, and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. *J. Climate*, **24**, 1154–1169.

Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. *J. Climate*, **23**, 2699–2721.

Murakami, H. and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate projections. *SOLA*, **6**, 73–76.

Future changes in TC frequency and genesis frequency

MPI (Maximum Potential Index)

$MPI^{2} = \frac{C_{k}}{C_{D}} \frac{T_{s}}{T_{0}} \left(CAPE^{*} - CAPE^{b} \right)$

where C_k is the exchange coefficient for enthalpy, C_D is the drag coefficient, T_s is the SST (K), and T_0 is the mean outflow temperature (K). The quantity $CAPE^*$ is the value of convective available potential energy (CAPE) of air lifted from saturation at sea level, with reference to the environmental sounding, and $CAPE_b$ is that of the boundary layer air. Both quantities are evaluated near the radius of maximum wind which is theoretically determined.

In recent years, TCs become more active.

•Hurricane activity in the North Atlantic (NA)

showed an increase over the past 30 years.

Hurricane Katrina (2005) : the most damaging storm in USA

Hurricane Rita (2005) : the most intense (895 hPa) TC

observed in the Gulf of Mexico

Hurricane Wilma (2005) : the most intense (882 hPa) TC in NA

•Abnormal TC number in the western North Pacific in 2004.

•Typhoon Morakot in 2009 caused catastrophic damage in Kaohsiung in Taiwan.

<u>Previous studies have proposed that these recent changes</u> <u>are due to global warming.</u>

Emanuel, 2005; Anthes et al., 2006; Hoyos et al., 2006; Mann and Emanuel,2006; Trenberth and Shea, 2006; Holland and Webster, 2007; Mann et al., 2007a; Mann *et al.,* 2007b

However, this view has been challenged by the following points:

a) The observation before satellite era (before 1979) is not reliable.

Landsea *et al.*, 2006; Landsea, 2007

b) Recent increases in the frequency of NA TCs are within the range of multi-decadal variability.

Pielke et al., 2006; Bell and Chelliah, 2006

c) Projectons by climate models are not reliable because the models are too coarse to resolve TC structures.

Goldenberg et al. 2001.

TC scale is 100–1000 km, while typical horizontal resolution of

Skill score of 25-year climatology

					Jan		Jul	
	Glo	Global —			Jan		Jul	
		variable	VS	region	v3.1	v3.2	v3.1	v3.2
•	Skill Score by	Precip	CMAP	Gbbal	0.7716	0.803	0.7862	0.8189
•	Skill Scole by	Precip	GPCP	G bbal	0.746	0.7814	0.7429	0.7566
	Taylor (2001)	Z500	JRA25	Gbbal	0.9928	0.997	0.9951	0.9943
	149101 (2001)	SLP	JRA25	Gbbal	0.9322	0.9735	0.9529	0.9533
		T 850	JRA25	Gbbal	0.9949	0.995	0.9908	0.9943
		U 850	JRA25	Gbbal	0.9363	0.9651	0.9435	0.9401
		U 200	JRA25	Gbbal	0.958	0.9702	0.9648	0.9778
		V200	JRA25	Gbbal	0.8198	0.8584	0.7758	0.8085
		Netrad	ERBE	Gbbal	0.9577	0.9714	0.9499	0.9644
		0 LR	ERBE	Gbbal	0.9387	0.9503	0.9425	0.9539
	- standard derivation	0 S R	ERBE	Gbbal	0.8778	0.9076	0.855	0.8873
C	5: standard deviation	GZ5eddy	JRA25	Gbbal	0.8918	0.9145	0.8108	0.8503
	(model/obs)	SLPeddy	JRA25	Gbbal	0.9062	0.9137	0.871	0.8909
	(III0de1/005),	T850eddy	JRA25	Gbbal	0.9401	0.9443	0.9291	0.9342
	R: correlation coefficient	U850eddy	JRA25	Gbbal	0.8433	0.8629	0.8722	0.9028
		U200eddy	JRA25	G bbal	0.8959	0.9154	0.8463	0.9137
					lor			1
	~	Sia		r o a io p		1	JU JU	1
		Variable Dire e in			V3.I	0.0152	V3.1	V3.Z
		Prec p		4. A S 12	0.7724	0.8153	0.3880	0.497
		Prec p		Aska	0./3/8	0.8034	0.4523	0.5010
		Precp		Aska	0.6488	0.7468	0.3441	0.4088
	Better at New Model	2500	JKA25	ASE	0.9823	0.9806	0.7200	0.7813
		SLP TOFO		ASE	0.9553	0.9562	0.7894	0.8830
	Better at Prev Model	1850		ASIA	0.9070	0.9032	0.9195	0.9770
		0800		ASIA	0.9387	0.9454	0.8395	0.0641
		0200		ASIA	0.9849	0.9944	0.8800	0.9041
		VZUU GZEoddy		ASIA	0.0000	0.4/1/	0.7945	0.7923
				Asia	0.0594	0.9102	0.0101	0.000
		JLF eduy		ASIA	0.0744	0.0017	0.0100	0.902
				Asia	0.0037	0.0004	0.0700	0.930
		0.0006003		ASIA	0.0033	0.0003	0.0393	0.0033
		u zoveday	UNAZU	ASIA	0.9210	0.90	0.7990	0.9217

Multi-SST Ensemble Projections using 60-km-mesh model

- 1) For each CMIP3 model, a mean future change in SST is computed by subtracting the 1979-2003 mean SST from the 2075-2099 mean SST.
- 2) The computed mean future change in SST is normalised by dividing by the tropical mean (30°S-30°N) future change in SST.
- 3) The normalised value for each model is subtracted from the multi-model ensemble mean of the normalised value.
- 4) The inter-model pattern correlation *r* of the normalised values is computed between each pair of models.
- 5) Norms (or distances) are defined as $2 \times (1 r)$ for each model, and the cluster analysis is performed using these norms.
- 6) When the final three groups are bounded, the clustering procedure is terminated.

The experiments with identical prescribed SSTs are eccentrically located in the panels, indicating that the dynamical parameters are more heavily influenced by differences in the SST spatial patterns.

Factors responsible for Inter-experiment differences

Y: YS, K: KF, A: AS,

black: CMIP3 mean, blue:C1, green:C2, red:C3

Factors responsible for Inter-experiment differences

	δS_a	δRH	δV_{pot}	$-\delta\chi$	$-\delta\Gamma_d$	$\delta\eta_{850}$	$-\delta V_s$	$-\delta V_{zs}$	$-\delta\omega_{500}$	δD
		Thermodynamic					Dynamic			
GL	0.70	-0.22	0.15	0.13	-0.66	0.22	-0.31	-0.28	-0.36	0.08
NH	0.75	0.24	0.74	0.41	-0.70	0.53	0.69	0.44	0.15	0.40
$_{\rm SH}$	0.47	-0.27	-0.06	-0.21	-0.04	0.60	0.64	0.43	0.69	-0.03
NIO	-0.48	0.33	0.31	0.40	-0.14	0.33	-0.81	0.44	-0.39	0.34
WNP	0.66	0.06	-0.06	0.23	-0.78	0.78	0.49	0.68	0.63	0.61
ENP	0.64	-0.00	0.58	-0.11	-0.43	0.51	0.72	0.51	0.51	0.62
NAT	-0.00	0.48	0.22	0.59	-0.65	0.43	0.41	0.50	-0.29	0.78
SIO	0.71	0.40	0.50	0.28	-0.47	0.91	0.83	0.83	0.83	0.40
SPO	0.45	-0.78	-0.21	-0.52	-0.31	0.35	-0.42	-0.10	0.57	0.43

Dynamic factors have high correlations, indicating these dynamic parameters are of primary importance for the inter-experimental differences.