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Recent changes in the Arctic

Recently, the Arctic has been characterized by a complex of
rapid, interrelated, pan-Arctic changes e.g,

« Reduced seaice cover

« Warmer Atlantic waters,

 Increased air temperature over most of the Arctic,
« Warming of permafrost,

« Melting of Greenland ice sheet

The physical changes have large impacts on the Arctic
ecosystems and society.

Anthropogenically driven climate change interacts with natural
variability (Sl and DECCEN time scales).

Adaptation and mitigation are needed to respond to the changes

Change in permafrost temperatures
at various depths in Fairbanks (Alaska)
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Recent observations: SAT

Change Surface Air Temperature (°C), 1957-2006 [from NASA GISS]




SAT changes

annual zonal mean anomalies vs 1951-1980
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Eos, Vol. 88, No. 40, 2 October 2007
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Polyakov et al., 2007

Observational Program Tracks Arctic Ocean
Transition to a Warmer State

Eos, Vol. 88, No. 40, 2 October 2007

Temperature increase in
core of AW of up to ca.
0.75°C; thicker AW layer




Trends? Or natural Variability?

lIIlIIIIIIrIIIIII TTITTATNTRNREERNET RN
e
lIIIIIIII:I FIIIIIIlIIII1III‘IIIIIIII‘I

1800 1920 1940 1960 1980 2000

AW temperature: Variability or secular change?

One more step toward a warmer Arctic
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Sea lce Trends: Ice Extent
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University of Tllinais - The Cryosphere Today : University of Tllinais - The Cryosphere Today
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Sea-ice trends: ice extent

Arctic Sea Ice Down to Second-Lowest Extent
2007: Minimum sea Ice extent
2008: Likely Record-Low Volume

Abrupt changes will present surprises

Ice age at the end of the 2007 and 2008 melt seasons
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Sea-ice trends

Disappearance of old
sea ice between 1982
and 2007

Credit: Animation from NSIDC
courtesy of C. Fowler and J.
Maslanik; Colorado Center for
Astrodynamics Research.
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Sea-ice trends: ice extent

Average Monthly Arctic Sea |ce Extent
September 1979 o 2009
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Arctic sea ice age

at the end of the melt season
1981 - 2000 average 2007

Mational Snow and lce Data Center

2008

Non-linear systems

Abrupt changes

Need to learn how to interpret data

from observing systems

NSIDC cournesy . Fowler and J. Maslanik, University of Colorado Boulder
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Sea-ice trends

Disappearance of old
seaice

End of February Arctic Sea Ice Age
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Sea-ice trends: projections
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outlooks

Sea-ice trends

September 2010 Sea Ice Outlook: June Report
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Sea-ice trends: ice extent

Arctic Sea Ice Extent
(Area of ocean with at least 15% sea ice)
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Greenland Ice Sheet

2005 Melt
Extent

NSIDC

http://cires.colorado.edu/scien

ce/groups/steffen/greenland/

melt2005/melt2005and1992.5
inch.jpg
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Figure 2

(2) Map showing 252 glacial earthquakes in Greenland for the period 1993-2008, detected and located using the surface-wave detection
algorithm. () Map showing the improved locations of 184 glacial earthquakes for the period 1993-2005 analyzed in detail by Tsai &
Ekstrom (2007). Note the tight clustering of the relocated earthquake epicenters near major outlet glaciers.

Glacial Earthquakes in
Greenland and Antarctica
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Figure 3

{a) Histogram showing seasonality of glacial earthquakes in Greenland based on detecdons for 1993-2008. Bars show the number of
earthquakes per month detected in Greenland. (b)) Histogram showing the number of glacial earthquakes detected in Greenland each
year since 1993,

The melt area is increasing ... and the slip seems to accelerate



Greenland Ice Sheet

http://svs.gsfc.nasa.gov/vis/a000000/a003300/a0033
95/JakobshavnOverheadWdates.1024 web.png

Melting at the surface can make
glaciers slide faster

(Zwally et al,, 2002)

Faster flow of outlet glaciers ... and faster interaction between
surface and grounding line



Thawing permafrost
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Fig. 6.22. Simulated mean annual ground temperature at

Fairbanks (Bonanza Creek), Alaska, from 1930 to 2003
(W Romanovsky, 2004).

ACIA, 2004

Seasonal Changes in Permafrost
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Active layer refers to the top layer of permafrost that thaws
each year during the warm season and freezes again in winter.
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Shift In vegetation zones

Current Arctic Vegetation Projected Vegetation, 2090-2100

Ice Present day natural vegetation lce Projected potential vegetation for
Polar Desert / Semi-desert of the Arctic and neighboring Polar Desert [ Semi-desert 2090-2100, simulated by the LPJ
Tundra regions from floristic surveys. Tundra Dynamic Vegetation Model driven
Boreal Forest Boreal Forest by the Hadley2 climate model.
Temperate Forest Temperate Forest

. Grassland
02004, ACIAf Maps @Clifford Grabhorn




Synthesis
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EOS, TRANSACTIONS AMERICAN GEOPHYSICAL UNION

VOLUME 86  NUMBER 34
23 AUGUST 2005
PAGES 309-316

Arctic System on Trajectory to
New, Seasonally Ice-Free State

Big Sky meeting,
2003

20 plus scientists
from diverse
backgrounds
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Northern
Sea Route

\&E .
,:-/Projected Ice Extent
2/ (5-Model Average for September)
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To gain a greater understanding of the tundra's ability to withstand oil exploration, heavy vehicles are sent to perform Figure 8's every two weeks throughout the winter. In the summer, Alaskan officials assess the damage.
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Arctic Coastal Areas Susceptible to Erosion

™ Unsolidified Coasts
- Coasts

Less than 10 Meters above
average Sea Level

Areas in Florida Subject to Inundation
with 100 Centimeter (3.3 ft) Sea Level Rise

CACIA, Map “Clifford Grabhorn

22



M




Climate Change as part of
Environmental Change

Climate Change can not be seen in isolation

In principle, the same human-induced pressures that
are forcing the climate system towards a new state
have significant effects on other environmental
systems such as water resources, ecosystems, food
supply, etc.

The physical changes have large impacts on the Arctic
ecosystems and society.

Adaptation and mitigation are needed to respond to the
changes

24



Arctic feedback on global climate:
Freshwater connection
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Arctic and global climate:
Future conveyor shutdown?

Key Questions:

e Can changes in freshwater fluxes from the
Arctic to the North Atlantic shut down the
conveyor (MOC, THC)?

e What would be the consequences of a
conveyor shutdown in a greenhouse world?

26



The Arctic freshwater reservoir
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Arctic and global climate:
Freshwater connection

‘Great Ocean Conveyor Belt’ principle;

Broecker, 1991
Freshwater export from Arctic to North Atl.

Heat transfer from ocean to atmosphere
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80’s and 90’s: Emerging detalls
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First signs of change: Rossiya 1990
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Fig 3 Vertical distnbution of temperature along the two sections across the Eurasian Basin,

platted vs latitude. For location see Fig 1 The small dots denote the maximum observation depth

o
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Maximum temperature in the Atlantic layer over the Eurasian Basin of the Arctic Ocean. Circled
numbers, Rossiya observations along the tracks shown as bold lines, Other numbers are taken
from the references given in brackets. The inset shows the maximum sea surface temperature
in Fram Strait at 78" N during 1980 — 90,

Quadfasel et al., Nature, 1991; Deep-
Sea Res., 1993




More changes

AARCTICE-21

ARCTICS1-21

B ADS84-30

10 20 30
Pacific water fraction [%]

94 vs 91

Figure 8. Comparison of 1991 and 1994 stations near
the Lomonosov Ridge for (a) river runoff fraction, (b)
sea ice meltwater fraction (positive = meltwater;
negative = ice formation), (c) Pacific water fraction,
and (d) location for these stations.

River runoff, sea ice meltwater, and Pacific water distribution
and mean residence times in the Arctic Ocean

Brenda Ekwurzel,' Peter Schlosser,™ Richard A. Mortlock, and Richard G. Fairbanks®
Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York
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Changes in the Greenland Sea:
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Fig. 1. Locations of tritium and *He stations
occupied on several cruises (6) between 1972 and
1988. The Greenland Sea data used in this study
are from cruises GEOSECS, Me42, Me52, TTO,
Me62, Me71, and Me8. Only some of the avail-
able samples have been measured from Me71 and
Me8. Station maps for the CFC stations are in (5,

11, 12).
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G5 Deep Water temperature trend (2500 to 3500m)
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Year

Reduction of Deepwater Formation in the Greenland Sea During the 1980s:
Evidence from Tracer Data

Peter Schlosser; Gerhard Bonisch; Monika Rhein: Reinhold Bayer

Seience, New Series, Vol. 251, No. 4997 (Mar. 1, 1991), 1054-1056.



1990’s: Basin - scale changes
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2000, Recent Environmental Changes in the Arctic:
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2000, Recent Environmental Changes in the Arctic:
A Review, Arctic, 53, 4.
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Arctic freshwater distribution

Depth [m]

Chukchi Svalbard

Sea w3 SRR o
Bering Fram AT 3¢
Strait Strait S 83885832 MR 2 CE2RNANY R & ] & E a I/"

1] B P T il il Rl L O i R
0 =
10] 750 -'- e . - . > e : z 3 - i E"
150
- = -100
el < -150
- B
=0 -200
0 -250 -
45 Salinity
50 -300
0 gg ssal Mendeleyev Ridge LO[B?HEESOVC LO"&?{T&’;WK
1000 Biain S b 8 Gakkel
Makarov Basin é% % gg Ridge Nansen Basin
1500 £38 3 Ea
- -4500 Lv‘ﬁ—“’
1500 2000 2000 2500 3000
00 Mendeleyer Distzocelnl Distance [km]
00 -
o River Runoff i ——
w00 Palelc Water 29 30 31 . .32 33 34 35
. Salinity [psul]
0n Sea-ice melt
Distance [km] Salinity data from Anderson et al., [1989], Anderson el al., [1994], and Swift et al,. [1997].

-5 10 05 oo of 10 16

8 [°C]




Arctic freshwater components

Balances of mass, salt, 180, and
nutrients allow us to quantify
the individual freshwater
components

P. Schlosser et al. / The Science of the Total Envirorament 237 /238 (1009) 15-30

8'190(%a)

Fig. 7. Distribution of 80 in the surface waters (depth < 15 m) of the Arctic Ocean and the adjacent seas.

Figure 3. Mean annual discharge and §'°0 data
available in the literature for Arctic Rivers. River
discharge (km® yr') is proportional to triangle size and
is listed in parenthesis within or near the triangle
symbol for the river [Becker, 1995; Pavlov et al.,
1996]. The negative numbers within or near the
triangle symbol for each river are the 8O (%) values
[Macdonald et al., 1989; Létolle et al., 1993; Ebvurzel,
1998].

LA+ fi=1,

JSa+ 18, + 15, +£5i= S,

£.8"0, +);51*OP +£8"%0, + £8%0, = §"0,,
fPO*, + PO, + fPO* +fPO,* =PO*,,

River runoff, sea ice meltwater, and Pacific water distribution
and mean residence times in the Arctic Ocean

Brenda Ekwurzel,' Peter Schlosser,™ Richard A, Mortlock, and Richard G. Fairbanks®
Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York



Freshwater components

Chukchi Svalbard Chukchi Svalbard
Sea Sea
& S NEw SHEENE o~ @& o
& 2 b2 aZadZ = = o=
g E8i SHiEN & L
0 R i FREFE T

S

T
. Lol
E%E:g'l' erdeeyey Ridge r??q“r&m
1] 500 1000 1500 2000 3000 Q 500 1000 1500 2000 2000 2500 3000
Distance [k Distance [km] Distance [km) Diztance [krr]

F————— m— [
Ca_ 4om O 10 20 30 40 50 60 TO 80

Fraction of Pacific Water [94]

180 [ %o |
Chukchi Svalbard Swalbard
Sea .
o WwomEs = = ai =
o pEdE e s = a3
o BBes ey g # g 3
0 T e o i T,
; TrAs I7:

Drepth [rm]

tuchi Chikohi ;

0 Eﬁgﬁﬁf ameeyey Ridge Ridge 0 foyes wkerdseyey Ridge Ridge H
Ec
ttakar o ERsin tfakar o ERsin E

Eathymetry Bathymetry g

_4500 ‘M -4500 y
o] 400 1000 1500 2000 2000 2500 3000 Q 200 1000 1500 000
Distanoe [k Distance [k Cistance [l

e i s — T T
ca. 13m 0 2 4 8 B 1012 14 16 ca. -3.5m M0 8 5 -4 -2 0 2 4 ca. 2m
Fraction of River Runoff [3s] Fraction of Sea-ice Meltwater [%]




Changing freshwater inventories

2007

0 10 12 14 16 18 20 22 24 26
freshwater relative to 34.8 (m)

From: Arctic report card
http://www.arctic.noaa.gov/reportcard/images/essays/ocean/o3-lrg.jpg




Transfer of freshwater signals
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Figure 2. {a) Change in salinity with time and depth at OWS Mike in the Norwegian Sea
since 1050, showing the progressive freshening in the upper 1 km owver the past five decades
{unpublished data, reproduced with kind permission of Dr Svein @sterhus, University of Bergen).
(b) The associated slow deepening of the of = 28.0 isopycnal at OWS Mike sinee 1950 (see
Hansen ef al. 2001).
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Figure 2. Timeseries of FW storage (cubic km) in Nordic Seas layer 250-1000 m.

How much Freshwater was added to the Northern North
Atlantic in Recent Decades?

by R. Curry
Woods Hole Oceanographic Institution, Woods Hole, USA
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Water mass transformation in the Greenland Sea
during the 1990s
1. Karstensen,' P, Schlosser,™ D, W, R, Wallace,' J, L. Bullister,® and J. Blindheim®
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NADW formation rate and global SST

10 =
In many coupled climate model
5 simulations global warming leads to
& 4 AT reduction of DWF in the North Atlantic
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Figure 9.21: Simulated water-volume transport change of the Atlantic “conveyor belt” (Atlantic overturning) in a range of global
scenarios computed by different climate research centres. Shown is the annual mean relative to the mean of the years (1961 to 1990) (Unit: SV, 00r N
10° m®"). The past forcings are only due to greenhouse gases and aerosols. The future-forcing scenario is the IS92a scenario. See Table 9.1 for
more information on the individual models used here.

Reduction of deep water formation in
the NA leads to cooling, mostly over
the North Atlantic.
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. - Figure 5. Surface temperature change (*C) due to a hypothetical THC shutdown in 2049, The
F utu re _ h Ot h O u Se O r b | g C h | I I7 HadCM3 madel has been run to 2049 under the IPCC [302a greenhouse-gas-forcing scenario. At
this point, fresh water was added to the North Atlantic to induce a THC shutdown, Anomalies
shown are the mean for the first decade after fresh-water addition, relative to the pre-industrial
climate. See text for interpretation. 41




Conseguences of Conveyor Shutdown

The total freshwater input into the North Atlantic in a

greenhouse world could be significantly above 100 mSyv

B1: 2090-2099
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Figure 1 Changes in surface air 00N
temperature caused by a shutdown

of North Atlantic Deep Water = =

(NADW) formation in a current -

ocean-atmosphere circulation 4N R
model. Note the hemispheric see- -
saw (Northern Hemnisphere cools

while the Southern Hemisphere 07r

warms) and the maximum cooling
over the northern Atlantic. In this
particular model (HadCM3)’, the 1575
surface cooling resulting from
switching off NADW formation is up

to6°C. Itis further to the west 90°5 W

e ——

“A1B: 2020-2029

compared with mast models, which
tend to put the maximum cooling
near Scandinavia. This probably
depends on the exact location of -4
deep-water formation (an aspect

not well represented in current

180°W

coarse-resolution models) and on the sea-ice distribution in the models, as ice-margin shifts act to amplify the cooling. The largest air temperature cooling is
thus greater than the largest sea surface temperature (SST) cooling. The latter is typically around 5 “C and roughly corresponds to the observed SST
difference between the northern Atlantic and Pacific at a given latitude. In most models, maximum air temperature cooling ranges from 6 °C to 11 °Cin

annual mean; the effect is generally stronger in winter.
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SEARCH: Study of Environmental
Arctic Change

The overall objective of SEARCH is to

Understand the nature, extent and future
development of the system-scale change
presently seen in the Arctic.




SEARCH: Science guestions

1. Is the arctic system moving to a new state?

2. To what extent is the arctic system predictable (i.e., what are the potential
accuracies and/or uncertainties in predictions of relevant arctic variables over
different timescales)?

3. To what extent can recent and ongoing climate changes in the Arctic be
attributed to anthropogenic forcing, rather than to natural modes of
variability?

4. What is the direction and relative importance of system feedbacks?

5. How are terrestrial and marine ecosystems and ecosystem services (i.e.,
processes by which the environment produces resources that support human
life) affected by environmental change and its interaction with human
activities?

6. How do cultural and socioeconomic systems interact with arctic
environmental change?

7. What are the most consequential links between the arctic and the earth
systems?
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SEARCH Strategy

Science Plan & Implementation Strateqgy at:
http://arcus.org/SEARCH/index.php

AON:Focus of IPY AO

SEARCH UCP, ARCSS,
Sea ice minimum
workshop,

2009 implementation
workshop

Data

MODELING

Data and Logistics
Opportunities

Data

N\

| Data Assimilation

Understanding and
Prediction

Understanding
Processes

PROCESS
STUDIES

Understanding
Specific Links

Impact on Ecosystem and Society
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SEARCH: Observing System

SEARCH needs to observe the transition of the
Arctic system from its present state into a warmer
world. This will require a new type of observing
system

The system has to be part of an international, pan-
Arctic network, and observe across domains
(physical, biogeochemical, and socioeconomic)

The data flow from the observing system will
provide insight into the nature and rate of change

The observing system is a tool that will inform the
Understanding Change and Responding to Change
activities

Arctic System on Trajectory to
New, Seasonally Ice-Free State



NSF AON Projects

IPY AON Awards

(AON was one of three research focus areas
organized according to the number of projects in
each SEARCH Implementation Plan category)

Atmosphere ........cccceeveevviinnnnnnnnnn. 4
Oceans & Sea Ice ..........cuueune...... 9
Hydrology & Cryosphere ............ 2
Terrestrial Ecosystems ............... 2
Human Dimensions .................... 2
IDALA .............oali, . RRRNERNERE 2

=00
21 IPY projects

~$37M during FY06 — FY09




‘ARQ

& NSF AON Projects

SEARCH Category IPY

Projects distributed among the SEARCH categories as follows:

IPY LTO AON

AtmOoSp h e .. B .. .eeeeeerss 4 3 ~
Oceans & SCAICE™ "Lt AR , , .. . 9 7 16
Hydrology & Cryosphere .....cccccceceecenne oee 2 2 4
Terrestrial Ecosystems .....ccccccecececececcncnees 2 1 3
Human DImMenSIONS  .ccccccceececcececcecenceces oo 2 o 2
IDATA  coevcercccessccrascrssscsssonss NIRRT ..o 2 4) 2
B s eeeeosonerononeeonnviosssa i N ORTINNIINNSTSINIEIRI. ., .8, 21 13 34
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@ SIZONET (NSF AON)

ATLANTIC
OCEAN

PACIFIC
OCEAN

International Ice Patrol

Drifting Instruments

eemp

Buoys & Weather Stations (IABP, including NSF AON, NIC, NOAA & ONR)
Heat & Salt Flux Sensors (NSF AON)

lce Mass Balance Buoys (NSF AON, CRREL)

lce-tethered Profilers (NSF AON)




AON Ocean Observations

BSSN

NSF IPY Observing: Oceans & Sea Ice
(Aleut Int’l

Agsoc, UAK) C30: Canada’s
Three Oceans (cony Aerial Hydrographic Surveys uw, wroi ...)

Bering ARCTIC CIRCY .\
Strait
(UW, UAF DAMOCLES
NOAA, (EV)
Russia)
Seasonal North Pole
P—— Environ-
(UAF, CRREL, mental
DAMOCLES) Observatory
..... o
Beaufort
Gyre Switchyard
Observato {Columbia ...)
dq L N & Seasonal
& Deepest
lce Zone
Waters ¥/ (UAF, CRREL,
(WHOY) 7 DAMOCLES)

Ice-Tethered Prors wHoi, NPs)  Davis OCA: Ocean Currents

& lce Dynamics, Mass Balance Strait of Arctic Canada (con)
and Weather Buoys (UW, BIO-CDN,
DAMOCLES)

(CRREL, IABFE, DAMOCLES ...)

DAMOCLES: Developing Arctic Modelling and Observing Capabilities for Long-term Environmental Studies
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*) AON Atmosphere Observations

Pallas/Sodankyla -

Pachora &

Siberia

Cherskii

Cloud Proparties-l {NSF ADN)

Cloud Properties-il (NSF AON)

Core Measurements at Summit (NSF AON) |/
Atmospheric Circulation (NSF AON)

UY Monitoring (NSF AON)

Greenland Climate Network (GC-Net)

DOE ARM Program

NOAA ESRL

IASOA

Figure 16. Location of circum-Arctic atmosphere observing sites.
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AON Permafrost Observations

Permaflrost Boreholes (NSF AON)

CRREL Permafrost/Active Layer Sites

USGS GTN-P Active Layer Monitoring |
USGS GTN-P Deep Boreholes "
USDA Soil Climate Analysis Network (SCAN) |
USDA Soil Temperature & Moisture
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Pilot Station 242y
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— APRFC Monitored Rivers

PACIFIC

" OCEAN

USGS Water Quality
USGS Stream Gauge wiWater Temperature
USGS Stream Guage

NOAA NWS AFPRFC
Kuparuk River Basin (NSF AON)
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USGS Banchmark Glaciers

USDA Snow Courses

USDA SNOTEL Sites

Snow-Net (NSF AON)

Mackenzie R.

PACIFIC
OCEAN

55



AON Terrestrial Ecosystem ODbs.
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@  LTER (NSF)
@  Intemational Tundra Experimant (NSF AON)
'@ Carbon/WaterEnengy Fluxes (NSF ADN)
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) AON Community Based Obs.

ATLANTIC
OCEAN

Bering Sea Sub-Network (BSSN) (NSF AON)
ELOKA (NSF AON)

Moving to a New State? - |

[ mMoving to a New State? - Ii

- | Arctic Borderlands Ecological Knowledge Co-op

m> e e
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NSF Investments into AON

100 0
SEARCH Category

= 80 | [l Ocean & Ice

80 B Hydrology & Cryosphere
8 ' B Terrestrial Ecosystems
80 40 Atmosphere
Data Management

W 30 B Human Dimensions

40
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Information from Martin Jeffries, NSF AON program director
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AON In Context
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Arctiz Observing Ne> vork
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International partners: DAMOCLES

Developing Arctic Modelling and Observing Capabilities
for Long-term Environment Studies

» reduce the uncertainties in our understanding of climate
change in the Arctic and in the impacts thereof

— Synoptic observational coverage of the Arctic Ocean sea-ice cover

— Synoptic observation and investigation of atmospheric key
processes

— Synoptic observation of the Arctic Ocean circulation and key
processes

— Integration and assimilation of observations with large-scale
models

— Assessment of impact on environment and humans
— User-friendly return of information to the community
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Topical Sessions + Conforence Programmse - Student Day

Conference Programme

Building on the success of previous Arcticet Annual Scientific Meetings, Arctic Change 2008 is designed with the intent to inform
participants of innovative Aretic research, essential to the understanding and management of the natural and built environments
of the Arctic impacted by climate change and globalization. In the spirit of trans-sectoral research, the programme will be — —
composed of 3 mix of concurrent topécal sessions and multidisciplinary planary sessions.

[ Dot Farares s s

Arctic Change 2008 will begin on the morming of Tuesday, 9 December with the Internabonal Student Day, organized by the
Arctichet Student Asseciation. The official Arctic Change 2008 registration reception will follow on Tuesday evening, providing the
opportunity to register and meet fellaw participants. Topical and plenary sessions will be presented from 08:30 am to 05:00 pm
from Wednesday, 10 December to Friday, 12 December. A dedicated poster session/reception will be held on the evening of
Wednesday, 10 December., Posters will also be available for viewing during the entire week. & conference banquet dinner will be
hested in the Hilton Hatel Ballroom on Thursday evening. For sponsorship opportunities,

click here.
Prefiminary agenda:

TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
9 DECEMBER 10 DECEMBER 11 DECEMBER 12 DECEMBER

08:30 - 10:00 Student Day Plenary Sessaon Plenary Sesson Topical Sessions
10:00 - 10:30 Colfes Break Coffes Break Coffes Break Colfee Break
10:30 - 12:00 Student Day Topical Sessions Topical Sessiones Topical Sessions
12:00 - 13:30 Lunch Lunch Lunch Lunch
13:30 - 15:00 ‘Studant Day Topical Sessions Topical Sessions Planary Sessions
15:00 - 15:30 Colfes Break Coffes Break Coffes Break Colfee Break
15:30 - 17:00 Stwedent Day Plenary Session Plenary Sessson Meeting Adjourns.
17:00 - 19:00 Registration/Reception Poster Session
19:00 - 23:00 Dinner on your own Dinnar on your own Banquat

The Final Programma (agenda, abstracts, list of participants, sponsors and exhibitors) will be available for downlcad cn this page
in Movember 2008. Hard copies of the programme will be included in the registration packages.
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http://www.arcticnet-ulaval.ca/index.php?fa=ArcticNet.showArcticNet

ISAC: long-term position

ISAC Is the future

Numerous
international program for
projects Arctic Change

research

INTERNATIONAL THE LEGACY

| I
2005 2006 2007 2008 2009 2010 2011

Anderson; see also Dickson: AOSB Newsletter



Perspectives

The Arctic is changing at a rapid pace.

Understanding the changes requires
observations, as well as modeling and
synthesis activities.

The observations have to be obtained through
a pan-Arctic integrated, long-term observing
system.

The IPY has provided the impetus to establish
the Arctic observing system.

Future international efforts and collaborations
needed to effectively finish implementation of
Arctic system observing needs in the context
of a global Earth observing system (e.g.,
GEOSS).

Modeling and synthesis efforts have to be
strengthened

EOS

Arctic System on Trajectory to
New, Seasonally Ice-Free State
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