On the transports connected with the AMOC in the subpolar North Atlantic

Xiaobiao Xu, Harley E. Hurlburt, William J. Schmitz Jr.,
Rainer Zantopp, Jürgen Fischer, and Patrick J. Hogan

Results from an interannually forced, 0.08° eddy-resolving simulation based on the Hybrid
Coordinate Ocean Model, in conjunction with a small but well-determined transport database, are
used to investigate the currents and transports associated with the Atlantic meridional overturning
circulation (AMOC) in the subpolar North Atlantic (SPNA). The model results yield a consistent
warming in the western SPNA since the early 1990s, along with mean transports similar to those
observed for the trans-basin AMOC across the World Ocean Circulation Experiment hydrographic
section AR19 (16.4 Sv) and boundary currents at the exit of the Labrador Sea near 53°N (39.0 Sv) and
east of the Grand Banks near 43°N (15.9 Sv).

Over a 34 year integration, the model-determined AMOC across the AR19 section and the western
boundary current near 53°N both exhibit no systematic trend but some long-term (interannual and
longer) variabilities, including a decadal transport variation of 3–4 Sv from relatively high in the
1990s to low in the 2000s. The decadal variability of the model boundary current transport near
53°N lags the observed winter time North Atlantic Oscillation index by about 2 years and leads the
model AMOC across the AR19 section by about 1 year. The model results also show that the long-
term variabilities are low compared to those on shorter time scales. Thus, rapid sampling of the
current over long time intervals is required to filter out high-frequency variabilities in order to
determine the lower frequency variabilities of interest.