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1. Introduction

Global-scale climate variations
such as those associated with
El Niño/Southern Oscillation
(ENSO) are ultimately mani-

fest in phenomena and processes that con-
trol regional-scale climates. For example,
shifts in the wintertime planetary scale
waves forced by tropical sea surface tem-
perature (SST) anomalies can result in
changes in the normal tracks and frequen-
cies of storm systems (e.g. Noel and
Changnon 1998) which can result in dra-
matic changes in regional climates of
North America.  Any potential changes in
extreme weather events are of particular
concern since these tend to have the great-
est economic and social consequences.  It
is therefore of interest to determine
whether the characteristics of extreme
events are influenced by short-term cli-
mate variability such as that associated
with ENSO.  For example, Gershunov and
Barnett (1998) and Gershunov (1998)
show that the frequency of heavy rainfall
is impacted by ENSO in a number of
regions of the United States including the
Great Plains, the Southeast, and the Gulf
States.  Cayan et al. (1999) show that
ENSO impacts the occurrence of extreme
(heavy) daily precipitation and stream
flow throughout the western United
States.

One limitation of many recent studies

of weather extremes is that the analysis of
the extreme events is carried out local in
space, with little information provided
about the underlying phenomenology and
mechanisms associated with the extremes.
In the case of precipitation, Web and
Betancourt (1992) emphasize that under-
standing the hydroclimatic controls on
flood frequency requires understanding
the modulation of the flood generating
mechanisms: for example, frontal systems,
monsoonal flows and tropical storms.  In
that sense, identifying the impact on
weather is an important step in determin-
ing the physical mechanisms by which
short term climate variations impact
extremes.

In this study, we examine the impact
of ENSO on extreme precipitation events
associated with winter storms over the
continental United States. By extreme
value we mean here the maximum daily
value over the course of a winter season.
The results are based on observations
(Higgins et al 1996), and an ensemble of
nine atmospheric general circulation
model (AGCM) simulations forced with
observed SST for the 50-year period 1949-
98.  The AGCM is the NASA Seasonal to
Interannual Prediction Project (NSIPP-1)
model described in Bacmeister et al.
(2000) and run here at a resolution of 2°
latitude by 2.5° longitude.  The nine runs
differ only in their initial atmospheric con-
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Fall is upon us, and with it
comes the start of schools and
universities, and after the tra-

ditional vacation period, a
refreshed (I hope!) research com-
munity. Fall is also the time when
the new Fiscal Year begins and
agencies begin allocating and
planning to spend their FY2006
appropriations (when Congress
and the President can agree on
them), proposing (internally) budg-
ets for FY2007, and planning for
FY2008 and beyond. The next six
months are a critical time for U.S.
CLIVAR to provide input to the fed-
eral research agencies.

In past issues of Variations, I
have highlighted the motivation for
reorganizing the structure of U.S.
CLIVAR and how such changes
would be carried out. At our first
annual meeting (or Summit), the
new organizational units met to
take U.S. CLIVAR forward (a report
on the Summit appears elsewhere
in this issue). The meeting was a
very positive one from several
points of view and I anticipate the
invigorating scientific discussion,
increased energy, and engagement
by both the scientists and agency
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representatives is the start of an
era of increased effectiveness for
the program.

I am saddened to report that
Mike Patterson, program manager
in NOAA’s Office of Global
Programs, will be taking an
extended leave of absence from
NOAA for the foreseeable future.
Mike has been a critical supporter
of U.S. CLIVAR and VAMOS
efforts. It has been my pleasure to
have worked with Mike for the
past several years. I now look for-
ward to working with Jin Huang,
program manager for the NOAA
CPPA program. I hope you will
join me in welcoming her to the
U.S. CLIVAR program.

In recent days the destructive
power of hurricanes has been
documented in the mass media;
their impact brought closer to us
through first-hand stories of sur-
vival and resilience. A hurricane is
one type of an “extreme” event
(other extreme events include pro-
longed anomalous temperatures,
droughts, and floods) that is by its
nature infrequent, but often very
calamitous. In this issue we pres-
ent a few reports on the connec-
tion between extreme weather
and ENSO, of the likelihood of
extremes in coupled climate model
runs, and shifts in multidecadal
patterns leading to potential
changes of regionally important
extreme events. 

ENSO and Extreme Weather
Over the Contiguous U.S.

pressed during La Niña years, while that is
less true for the observations.

We next examine how ENSO impacts
the winter maxima by fitting the daily
maxima to a class of extreme value distri-
butions.  In particular, we fit the maximum
values (x) to the Generalized Extreme
Value (GEV) cumulative distribution
function (Coles 2001)

,
with location parameter (µ), scale parame-
ter (�), and shape parameter �.  Here  

and �>0.  The Gumbel distribution (�=0 )
is one of three submodels of the GEV, the
other two being the Fre`chet (�=0 ) and
reverse Weibull (�>0).  The N-year return
value for the GEV distribution (the value
that is on average exceeded once in N-
years) is, 

We found that, for the observations,
the Gumbel distribution provides a reason-
able representation of the distribution of
the maximum values of the PCs.  On the
other hand, we found that the reverse
Weibull distribution provided the best fit
to the leading simulated PCs.   It is not
clear whether this represents a real differ-
ence between the model and observations
or whether the limited sample size (49
winters) of the observations is simply
insufficient to produce a statistically sig-
nificant estimate of the shape parameter.  

In order to examine the impact of
ENSO, we carry out the extreme value
analysis separately for the La Niña, neutral
and El Niño years.   The impact of ENSO
is quantified by computing an effective
return period N* (Katz et al. 2002),
defined for the GEV distribution as 
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ditions: these were chosen arbitrarily from
previously completed simulations.

An empirical orthogonal function
(EOF) analysis of daily precipitation data
is carried out separately for the observa-
tions and simulations to isolate the leading
modes of precipitation variability.  For
both the observations and simulations, the
first six rotated EOFs consist of localized
precipitation anomalies that emphasize
variability along the west coast, and the
southern and southeast United States, and
account for more than 50% of the variance
over much of these regions.  In the case of
the observations, we find that the leading
EOFs can be identified with many of the
major winter storms that have occurred
over the continental United States during
the last 50 years. We focus here on those
storms that contribute to extreme precipi-
tation events along the gulf coast (the GC
EOF) and the east coast (the EC EOF).
These storms are well simulated, and the
ensemble of runs provides a large sample
of extreme events for statistical analysis.
In the observations, the GC and EC storms
show up as EOFs 3 and 4, respectively.  In
the EOF analysis of the model simula-
tions, the GC and EC storms show up as
EOFs 6 and 4, respectively.  The model
EOFs do have substantially less variance
compared with the observed (the ratio of
simulated to observed variance is 0.34 for
the GC EOF and 0.45 for the EC EOF).
This is likely a result of the relatively
coarse resolution of the model.

2.  The impact of ENSO
In this section we examine the impact of
ENSO on the extreme values of the PCs
associated with the GC and EC EOFs.  We
begin by ordering the years according to
the overall level of activity of the storms
during each winter (measured by the vari-
ance of the PCs – see Table 1).   Both the
observations and simulations show a
predilection for enhanced activity in the
GC and EC storms during El Niño winters,
while suppressed activity in the GC storm
tends to occur during La Niña years.  The
simulated EC storms also tend to be sup-
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Red� -� El� Nino� winters�
Blue� -� � a� Nina� winters�
Dashed� -� observations�
Solid� -� model� � (9� member� ensemble)�
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Figure 1: Probability Density Functions (PDFs) of extreme winter storms that tend to develop along
the Gulf Coast (GC) during DJF (1949-1998).  The PDFs correspond to the maximum value of the
principal components associated with EOF 3 (observations) and EOF 6 (model).  Values are scaled
so that the model and observed EOFs have the same total variance.  Units are arbitrary.  The PDFs
are the fits to a Gumbel Distribution. The analysis was done using the XTREMES software package
(Reiss and Thomas 1997).
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Figure 2: Same as Fig.1, except for the extreme winter storms that develop along the east coast
(EC).  The PDFs correspond to the maximum value of the principal components associated with EOF
4 (observations) and EOF 4 (model).

where the star (*) indicates conditional
parameter values, and XN is the uncondi-
tional N-year return value   For example,
one might compute XN from a full record,
and then recalculate the parameters only
for El Niño years.  In that way one can
more readily quantify the impact of El
Niño in terms of the change in the return
period.

The results for the GC and EC princi-
pal components are shown in Table 2.   For
the observations, only the location param-
eter, µ, is impacted by ENSO – there are
no significant impacts from ENSO on the
scale parameter, �. In fact, we take advan-
tage of this result by fixing the scale
parameter to be that estimated from the
full (unconditional) record, thereby reduc-
ing the number of free parameters in the
final fit.  Both the GC and EC storms have
significantly different location parameters
during cold and warm years.  The impact
is quantified in the last column in Table 3
in terms of the impact on the return values.
The results are such that observed extreme
GC and EC storms that occur on average
only once every 20 years (20-year storms)
would occur on average in half that time
under El Niño conditions.  In contrast,
under La Niña conditions, 20-year GC and
EC storms would occur on average about
once in 30 years.  The results are quite
similar for the simulated GC storms in that
the 20-year return values would occur on
average in half that time during warm
years, and twice that time during cold
years.  For the EC storms the 20-year
return value would also occur in half that
time under warm conditions and in about
twice that time under cold conditions.

Figure 1 shows the results of fitting
Gumbel distributions to the observations
and each of the 9 ensemble members.  We
choose here to fit the simpler Gumbel dis-
tribution to the model results since, by
doing the fits to the individual ensemble
members, we are limiting the sample size
to that of the observations.  The scatter
among the ensemble members gives an
indication of the sampling errors.   The
fact that the fit to the observations falls
within the scatter suggests that the model
results are quite realistic.  The results also
show that the impact from ENSO clearly
separates the warm and cold years (despite
the sampling errors), with La Niña years
tending to produce considerably less
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more narrow and peaked.                     �
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intense extremes than the El Niño years. 
Fig. 2 is the same as Fig. 1, except for

the EC storms.  Here again we see that
the fits to the observed values fall within
the scatter of the fits to the individual
ensemble members.  The cold and warm
years are also clearly separated, though
in this case there is considerably more
scatter in the results for the warm years,
with some ensemble members showing a
quite broad distribution, while others are
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88-89            88-89             88-89           4 9 - 5 0  

70-71            75-76             49-50           59-60 

93-94            70-71             79-80           50-51   

74-75            73-74             85-86           88 -89  

75-76            49-50             87-88           7 5 - 7 6  

59-60            59-60             50-51           9 5 - 9 6  

61-62            53-54             56-57           73 -74  

50-51            60-61             55-56           60-61 

49-50            50-51             68-69           52-53 

67-68            96-97             80-81           7 0 - 7 1  

62-63            84-85             51-52           5 5 - 5 6  

56-57            64-65             64-65           80-81 

85-86            74-75             95-96           85-86 

73-74            95-96             61-62           71-72 

84-85            55-56             70-71           89-90 

94-95            78-79             75-76           6 4 - 6 5  

69-70            80-81             52-53           51-52 

68-69            79-80             62-63           61-62 

55-56            56-57             76-77           78-79 

83-84            71-72             96-97           8 4 - 8 5  

52-53            66-67             53-54           7 9 - 8 0  

89-90            62-63             93-94           7 4 - 7 5  

95-96            83-84             60-61           81-82 

60-61            67-68             67-68           9 0 - 9 1  

96-97            63-64             71-72           53-54 

66-67            85-86             69-70           96-97 

79-80            54-55             84-85           62-63 

72-73            89-90             74-75           56-57 

71-72            81-82             91-92           66-67 

80-81            57-58             58-59           63-64 

51-52            51-52             54-55           8 3 - 8 4  

57-58            68-69             83-84           6 8 - 6 9  

81-82            69-70             89-90           9 2 - 9 3  

63-64            87-88             72-73           5 4 - 5 5  

87-88            52-53             77-78           67-68 

53-54            90-91             90-91           6 5 - 6 6  

64-65            65-66             66-67           7 7 - 7 8  

58-59            77-78             73-74           6 9 - 7 0  

76-77            61-62             57-58           5 8 - 5 9  

92-93            58-59             65-66           57 -58  

86-87            76-77             81-82           8 7 - 8 8  

54-55            93-94             94-95           76-77 

65-66            91-92             92-93           91 -92  

77-78            97-98             63-64           9 4 - 9 5  

78-79            92-93             86-87           7 2 - 7 3  

91-92            72-73             59-60           8 6 - 8 7  

90-91            94-95             78-79           93-94 

82-83            86-87             82-83           97 -98  

97-98            82-83             97-98           82 -83  

Table 1:  List of the winters (DJF) ordered by
increasing variance for the GC and EC PCs from
the observations and model simulations.  Blue
indicates La Niña years, and red indicates El
Niño years. Bold indicates major events. Italics
indicate weak events.  The classification of the
years into warm and cold events is that of the
Climate Prediction Center (the classification
scheme is subjective and is based on SST analy-
ses; http://www.nnic.noaa.gov)

Table 2: The parameter estimates of the GEV distribution for the EC and GC PCs from the observa-
tions and model simulations.  Values are based on the maximum daily values during DJF based on
either the 50 (1949-98) observed winters or the 450 simulated winters comprised of nine ensemble
members times fifty (1949-98) years.  Separate fits are done for La Niña, neutral and El Niño win-
ters.  For the observations, the values in parentheses are the 90% confidence intervals based on
2000 Monte Carlo simulations.  For the simulations, the values in parentheses are the standard
errors.  Parameter values (µµ, ��) are normalized by the standard deviation of the PCs.  The last col-
umn shows the effective return period (in years) that the X20 value would have under warm, cold, or
neutral ENSO conditions. The results were computed using either the XTREMES software package
(Reiss and Thomas 1997), or the extRemes software described at
http://www.assessment.ucar.edu/toolkit/index.html.
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must obey well defined distribution func-
tions. If extreme events are defined to be
the maximum or minimum value encoun-
tered over a fixed period of time, for
instance seasonally or annually, the
Generalized Extreme Value (GEV) distri-
bution function appropriately describes
the distribution of such extreme values
(Castillo, 1988). By further considering
the tail of the appropriate GEV distribu-
tion, one is truly describing rare events. 

The GEV distribution, F(x), is a three
parameter function, 

(1)

where �, �and �are called the location,
scale and shape factors. The Gumbel dis-
tribution is a special case where the shape
parameter, �, is zero. F(x) is the limiting
cumulative distribution function of the
maxima of a sample of independently and
identically distributed random variables
such as the annual or seasonal extrema of
a sample of daily averaged fields
(Leadbetter et al. 1983). The three param-
eters of the GEV distribution may be
quickly and accurately estimated from a
sample of extreme values using a tech-
nique based on L-moments (Hosking and
Wallis 1997). 

The return value of a random variable,
XT is that value which is exceeded, on
average, once in a period of time, T. For
example, when considering annual maxi-
ma of daily averaged variables, there is a
1/T chance of any daily average exceeding

XT in a given year (where T is in years).
Formally, this is straightforwardly defined
as

(2)

Solving for XT using the above definition
of the GEV distribution yields,

(3)

Hence, return values of annual extrema
are readily obtained by this inversion of
the GEV distribution after its three param-
eters have been estimated. 

In preparation for the Fourth
Assessment Report (AR4) of the
Intergovernmental Panel on Climate
Change (IPCC), the world’s leading cli-
mate modeling groups have performed a
suite of integrations under common forc-
ing conditions. Data from these simula-
tions have been quality controlled and
archived by the Program for Climate
Model Diagnosis and Intercomparison
(PCMDI) at the Lawrence Livermore
National Laboratory. A subset of the mod-
eling groups submitted daily output, and
some of the groups even submitted data
from ensembles of integrations.

Individual integrations of a single
model differing only in initial conditions
are statistically independent and identical-
ly distributed.  The annual maxima over a
given period may be straightforwardly
obtained for each realization. In transiently
forced numerical experiments, if the period
is short enough to ignore trends in the data,
these sets of extrema may be concatenated
to increase the sample size and reduce the

Changes in Daily Precipitation and
Surface Air Temperature Extremes

in the IPCC AR4 Models
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Extreme weather events can have
serious impacts on human and
ecological systems. In this
paper, predicted twenty-first

century changes in the twenty year return
value of seasonal maximum daily aver-
aged precipitation and annual maximum
daily averaged surface air temperature are
calculated from the archived results of the
IPCC AR4 models. 

The projected likelihood of changes in
extreme weather events as the mean cli-
mate changes over the course of the com-
ing decades is high.  However, the ability
of the current generation of climate mod-
els to predict changes in extreme weather
is largely untested. Extreme value theory
provides a rigorous statistical formalism
to quantify how climate models simulate
extreme weather events as well as what
they tell us about the predicted changes in
such events. The definition of “extreme”
is somewhat arbitrary as what might be
considered extreme at one place and time
might be quite ordinary somewhere else.
Likewise, the impact of an extreme event
of any given size depends greatly on the
context in which it occurs. Often investi-
gators consider events in the upper five or
ten percentiles of the distribution of possi-
ble events to be extreme (for instance,
Easterling, et al. 2000). However in this
paper, we follow the formalism of Zwiers
and Kharin (1998) and consider extreme
events to be much rarer occurrences. The
extreme values of a random variable,
when precisely defined, are also random
variables. Extreme value statistical theory
(Leadbetter et al. 1983) dictates that under
very general assumptions regarding the
parent distribution, the values in its tail
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Figure 1: a) Mean model predicted change

(Kelvins) of the twenty year return value of

the annual maximum daily averaged

surface air temperature. The period consid-

ered is 1990-1999 to 2090-2099. 

b) Difference (Kelvins) between the predict-

ed change in twenty year return values

and the warmest seasonal mean values

obtained for surface air temperature from

the mean model ensemble. The period

considered is 1990-1999 to 2090-2099. 

c) The number of times on average over a

twenty year period that the 1990-1999

annual maximum daily averaged surface

air temperature twenty year return value

levels would be reached under the SRES

A1B 2090-2099 forcing conditions over

twenty years. Under 1990-1999 forcing

conditions, this value is defined to be one.

Figure 1a

Figure 1b

Figure 1c
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uncertainty in the estimation of GEV distri-
bution parameters. In this study, the focus
is on single decades at the ends, i.e. 1990-
2000, and 2090-2099, of the “climate of the
twentieth century” (20c3m) and the “SRES
A1B scenario” (sresa1b) which is the 750
ppm stabilization scenario. 

Output from different models may also
be combined to form a multi-model
ensemble. Such techniques often yield cli-
matological results that are in better agree-
ment with reality than any single model
(Taylor, et al 2005). The procedure used in
this study weighted each model equally
regardless of the number of available real-
izations. Because each individual model
has different biases, the models’ annually
averaged values were subtracted from the
corresponding extrema and the mean
model’s annually averaged values added
back to the result. For those models with
multiple realizations, the maxima of each
individual realization were calculated prior
to this step and a single-model ensemble
average of these maxima formed.
Regridding to the coarsest model’s hori-
zontal resolution completed the construc-
tion of the multi-model ensemble. Hence,
the number of multi-model “realizations”
equals the number of individual models
considered.

The model results in the IPCC AR4
database span a wide range of resolutions
and sensitivity to atmospheric forcing
changes. Those modeling groups that con-
tributed daily averaged datasets are sum-
marized in Table 1.

The change in the multi-model twen-
ty year return value of daily averaged sur-
face air temperature from the end of the
twentieth century (1990-1999) to the end
of the twenty-first century (2090-2099) is
shown in figure 1a under the A1B SRES
scenario forcing conditions. Positive
changes (indicating warming) are seen
almost everywhere except in two polar
ocean locations. The largest changes are
over land in the Northern Hemisphere. In
Europe, Southern Canada and parts of the
continental United States, changes in the
return value exceeding five Kelvins are
widespread. The overall spatial pattern of
changes in the extreme values of surface
air temperature mimics that of changes in
the relevant mean values. For both the
multi-model and single model ensemble
cases, the centered pattern correlation
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Figure 2: a) Predicted fractional change of the

twenty year return value of the annual maximum

averaged daily precipitation. The period considered

is 1990-1999 to 2090-2099. b) The number of

times on average over a twenty year period that

the 1990-1999 annual maximum daily averaged

precipitation twenty year return value levels would

be reached under the SRES A1B 2090-2099 forcing

conditions over twenty years. Under 1990-1999

forcing conditions, this value is defined to be one.

Figure 2a

Figure 2b
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factor between the changes in return
value and the changes in the decadal
average of the hot season (either JJA or
DJF) factor exceeds 0.8. However, this is
not to imply that the extreme value
changes are identical to the mean value
changes. In figure 1b, the difference
between the twenty year return value
changes and the changes in the hot season
decadal mean are plotted revealing spa-
tially consistent regions over land where
the return values changes are up to two
Kelvins higher than the mean value
changes. Interestingly, the negative
changes seen in the multi-model return
value changes do not appear in the single
model ensemble results for return value
changes but rather come from large con-
tributions from single realization models.
These negative changes are also not man-
ifested in the mean model hot seasonal
mean changes suggesting that these

be reached under the SRES
A1B 2090-2099 forcing con-
ditions. Over much of the
globe, present day rare events
would become commonplace,
often occurring on average
more than ten times over the
twenty years.

Changes in precipitation
extremes are postulated to be
related to changes in atmos-
pheric temperature (Allen and
Ingram, 2002). For as the
atmosphere warms, it can
potentially hold more mois-
ture. Extreme precipitation
events occur when large frac-
tions of the total moisture
contained in a column of air
precipitates out. Hence, under
warmer atmospheric condi-
tions, increases in extreme
precipitation events could be
expected. This mechanism,
governed by the Clausius-
Claperyon relationship, is
much simpler than the com-
plex energy balance relation-
ship expected to be responsi-
ble for changes in the mean
hydrologic cycle (Allen and
Ingram, 2002). As a result,
changes in mean precipitation
are poorly correlated with
changes in precipitation

extremes. In figure 2a, the change in the
multi-model twenty year return value of
annual maximum daily averaged precipita-
tion from the end of the twentieth century
(1990-1999) to the end of the twenty-first
century (2090-2099) is shown under the
A1B SRES scenario forcing conditions. In
this map, the changes are shown as a frac-
tion of the 1990-1999 values to better por-
tray both moist and dry regions in the same
figure. As with surface air temperature
extremes, increases are widespread
although there are a few noticeable areas
of decreases over some deserts and eastern
oceans. Over much of the land mass, 15%
to 25% increases in the twenty year return
value are predicted. The associated
increase in frequency of large events is less
for precipitation than it is for surface air
temperature. In figure 2b, the number of
times on average over a twenty year period
that the 1990-1999 daily precipitation

regions may be noisy and require more
integrations.

The twenty year return value repre-
sents rare events, likely to occur only a
few times over the course of an individ-
ual’s lifetime. The predicted large changes
in surface air temperature extremes would
likely have significant impacts. Another
way to gauge the magnitude of these
changes is to consider the change in fre-
quency of a given size event. Upon deter-
mination of the GEV distribution, this may
be straightforwardly determined by calcu-
lating the return time, T, from equation 2.
The twenty year return value increases of
figure 1a imply that the end of twentieth
century levels would be realized on aver-
age far more often than once over that
return period at the end of the twenty first
century. Figure 1c show how many times
on average over a twenty year period that
the 1990-1999 return value levels would

Model Number of realizations Atmospheric sub model 
Resolution 

 20c3m sresa1b  

CCSM3.0 8 4 T85L26  

MRI3.2 5 5 T42L30 

PCM 4 4 T42L17 

MIROC3.2 3 3 T42L19 

CSIRO 2 2 T63L18 

CCCMA 1 1 T47L31 

GISS ER 1 1 5
o
x4

o
L20 

GISS AOM 1 1 4
o
x3

o
L12 

GFDL CM2.0 1 1 ~2.5
o
x~2

o
L24 

GFDL CM2.1 1 1 ~2.5
o
x~2

o
L24 

Multi-model 10 10 5
o
x4

o
 

 Table 1: IPCC AR4 modeling groups that contributed daily averaged data sets.
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VARIATIONS
return value levels would be reached under
the SRES A1B 2090-2099 forcing condi-
tions is shown. Over northern hemisphere
land masses, these present day rare precip-
itation events would be reached about three
times more often under 2090-2099 SRES
A1B conditions as opposed to ten times
more often for similar rare events of high
surface air temperature.

The general features of the mean
model extreme value changes are repro-
duced in the four individual models that
have available ensembles
of more than two realiza-
tions. Although not shown
here, each of the models
predicts large changes in
surface air temperature
return values over conti-
nental land masses.
Following the behavior of
predicted changes in
decadal mean surface air
temperatures, MIROC3.2
predicts surface air tem-
perature return value
changes considerably
larger than the mean
model while CCSM3.0, MRI3.2 and PCM
exhibit less sensitivity to forcing changes
than does the mean model. Similarly con-
sistent with decadal mean temperature
changes, precipitation return value
changes are predicted to increase over
widespread areas of the globe by the indi-
vidual models. Those models exhibiting
larger temperature sensitivity to forcing
changes, such as MIROC3.2, show signif-
icantly larger increases in precipitation
return values than those with lower sensi-
tivities, such as PCM. This is consistent
with the Clausius-Claperyon mechanism
suggested by Allen and Ingram (2002).
Also similar to the mean model, the indi-
vidual model ensembles exhibit low corre-
lation between precipitation mean value
and extreme value changes.

In assessing the statistical significance
of these extreme value changes, one must
consider two related but distinct aspects of
the available sample size. The first con-
cerns the accuracy of the estimation of the
three GEV parameters. Using a Monte
Carlo approach (Hoskins and Wallis,
1997), reveals that changes of the magni-
tudes encountered under a century of
SRES A1B forcing are highly significant

to uncertainty in the estimation of the
GEV parameters (Wehner, 2004). A sec-
ond source of uncertainty, not addressed
by this technique, comes from the internal
variability of the climate system and the
model’s ability to simulate it. For if one
were to repeat all the integrations with
slightly perturbed initial conditions, a
completely different parent distribution of
daily values would be obtained. Until a
much larger database of simulations is
available, this question of the stability of

the sample must be
delayed.
Atmospheric compo-
nent model resolution is
relatively coarse in all of
the IPCC AR4 models.
This is more of an issue
in the analysis of precipi-
tation extremes than it is
for surface air tempera-
ture extremes. By defini-
tion, extreme precipita-
tion events are the result
of individual storms. At
horizontal resolutions
exceeding a hundred

kilometers, storm fronts are weakly repre-
sented by the models if at all. Preliminary
analysis suggests a strong dependence of
precipitation return value on horizontal
resolution. Much larger values are
obtained in models with greater spatial
resolution and are in better agreement with
observations.

Datasets to validate model simulation
of extremes are quite limited and the vari-
ations between models are large (Kharin,
et al 2005). Nonetheless, in the IPCC AR4
models considered here, a consistent pat-
tern of statistically significant and large
changes in precipitation and surface air
temperature extremes is found.                �
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The last 15 years have seen much
research on decadal to multi-
decadal (D2M) climate modes
and their global and regional

impacts. At least some of these D2M
modes suggest compelling climatic and
ecological impacts.  Both the Pacific
Decadal Oscillation (PDO) and the
Atlantic Multidecadal Oscillation (AMO)
are associated with alternating trans-
decadal regimes in precipitation and
drought frequency, which appear to be
sensitive to small but persistent changes in
the prevalent atmospheric circulation pat-
terns over the continental regions adjacent
to the oceans that mediate the oscillations.
They have also been shown to modulate
(render nonstationary) the rainfall signa-
tures of El Niño-Southern Oscillation
(ENSO) in the United States and they are
reflected in the multidecadal changes in
North Pacific fisheries. Of concern for cli-
mate applications is the fact that — unlike
El Niño-Southern Oscillation (ENSO) —
numerical models have proven incapable
of predicting future phase shifts of D2M
climate modes in a deterministic manner. 

The alternatives to such predictions
are probability-based projections, but
these are hampered because the instrumen-
tally based time series are limited to the
last 130-150 years, which yield too few
realizations of D2M cycles for conven-
tional statistical approaches to deal with.
There are two ways to approach the lack of
suitable observational data sets: (1) apply-
ing Monte Carlo-style resampling tech-
niques to the climate index data and (2)
analyzing longer, multi-century proxy
reconstructions, based mostly on tree
rings. To illustrate this, we apply both
approaches to the problem of projecting
the risk of a future shift in the AMO. By

Continued on Page 12

The Probabilistic Projection 
of Climate Risk

David B. Enfield1 and Luis Cid-Serrano2

1NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, 33149 USA. [david.enfield@noaa.gov]
2 Statistics Department, Universidad de Concepción, Concepción Chile [lucid@udec.cl]

Fig. 1. Upper panel: Smoothed annual tree ring reconstruction of the Atlantic multidecadal oscilla-
tion (AMO) index by Gray et al. (2004). Lower panels: Smoothed resampled versions of the Gray et
al. index using randomization in the frequency domain (Ebisuzaki 1997). Numeric annotations are
the intervals (years) between zero crossings. 
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then adjusting a probability model to the
distribution of resampled AMO phase
intervals, we extract a practical method for
determining the risk of a future departure
from the current AMO climate regime. In
lieu of non-existent deterministic predic-
tions, this method provides a statistically-
based guide for the development of deci-
sion support tools for managers and stake-
holders in sectors affected by D2M cli-
mate modes, such as agriculture, water,
energy, health and disaster risk. 

To illustrate the methods, we use the
unsmoothed 424-year annualized index of
the AMO reconstructed from tree rings in
North America and Europe (Gray et al.
2004), calibrated against the AMO index
suggested by Enfield et al. (2001). To
eliminate unwanted short-interval vari-
ability, the time series are then smoothed
with a Butterworth filter of order 8 and a
half-amplitude response cutoff at 15 years.
To increase the sample size we randomly
resample the index multiple times, each
time transforming the original time series
into the frequency domain, randomizing
the Fourier phases, and reverse transform-
ing back to the time domain. Unlike most
randomizations in the time domain, this
method preserves the original power spec-
trum, but still produces resampled series
whose temporal correlations with each
other and the original series are expected
to be zero on average.  Fig. 1 (top panel)
shows the smoothed AMO reconstruction,
annotated with the climate regime inter-
vals between zero crossings, plus similar
plots for three randomly resampled ver-
sions of the data. The assumption implicit
in this resampling is that the original
series is extracted from a larger population
(longer duration) with time-invariant sta-
tistics (stationary). 

The histogram of Fig. 2 (top) illus-
trates a typical empirical distribution of
AMO climate regime intervals produced
by extracting five new time series from
the original Gray et al. (2004) spectrum.
The distribution is fit by the smooth curve,
which corresponds to a gamma pdf whose
shape (A) and scale (B) parameters are
adjusted to the data by maximum likeli-
hood estimation (MLE). As in the exam-
ple shown, a Kolmogorov-Smirnov (KS)

goodness-of-fit test is applied to the
cumulative distribution (cdf, lower panel)
and usually shows the fit to be acceptable
at the 95% level of significance. Each new
fivefold resampling results in varied but
similar parameter estimates. To obtain a
stable estimate of the gamma distribution
for the 424-year period, we average the
parameter estimates from 50 resamplings,
obtaining A = 1.93 and B = 10.3. These
values are later used to project the risk of
future climate regime shifts. 

If we divide the longer index series
into three segments of 141 years each and
repeat the above procedure, we find that
the distribution parameters differ signifi-
cantly from one segment to another, which
means that the AMO process is not station-
ary. This does not invalidate the estimation
procedure, but it means that the distribu-
tion parameters are more uncertain than
implied by the 50-member spread for the
longer 424-year estimation. By pooling the
150 parameter pairs for the three segments,
we can estimate the uncertainty of the
underlying distribution more realistically.
We will return to this in a later section.

�ӹ�����૱ۿޱ�॰৺���૱֊ۿ��ੴ

If we let P(�) represent the probability of
a realization �within the population space
of the stochastic climate regime intervals
(T), we can then construct useful probabil-
ity projections for future realizations,
based on the estimated gamma parameters
for the intervals between zero crossings of
the AMO index. For example, the condi-
tional probability that a future climate
regime shift will occur within t2 years,
given that t1 years have elapsed since the
last, opposite regime shift, may be
expressed as

where t = t1 + t2 is the current climate
regime interval and �[t] is the estimated
gamma cdf. A reasonable, further refine-
ment of this statement is to ignore the
probability space for very short intervals
(five years or less) that would normally be
ignored in practice in retrospective analy-

sis. This is accomplished by using a trun-
cated gamma in Eq. 1, �[t] = �[t]/(1-�
[5]), where t > 5. 

Fig. 3 shows the probability P(�) as a
function of t1 (abscissa) and t2 (ordinate).
An example of using this calculation is as
folllows. It is generally thought that the
AMO switched from cool to warm during
the 1994-95 time frame. If we use Fig. 3
with t1 = 10 years, i.e. the number of years
that have elapsed since that time, we find a
rather low probability (< 30%) that the
AMO will switch back to its cool phase in
less than t2 = 5 years from now. For t2 = 10
and 15 years, the risk increases to ~51%
and ~70%, respectively, while a climate
regime shift within 20 years is highly like-
ly (~86%). Based on current research, such
a shift would be associated with a return to
more frequent droughts in Florida, fewer
droughts in the Colorado River basin, and
less frequent severe hurricanes in the trop-
ical Atlantic. As expected, Fig. 3 shows
that the risk for any of these t2 values
increases as time advances and the last cli-
mate regime shift recedes further into the
past (t1 increases). 

The uncertainty of such estimates can
be derived from the parameter estimates of
the three Gray et al. (2004) time segments,
which collectively have a considerably
larger spread than those of the 424-year
estimation used for Fig. 3. This is primari-
ly due to the nonstationarity of the inter-
vals over the last half millennium. Pooling
the 3x50 segment estimates of A and B, we
randomly select a large number of param-
eter values within their overall 1-�confi-
dence intervals and generate the corre-
sponding rms uncertainty in P(�) over the
domain of Fig. 3. The uncertainty is fairly
uniform over the [t1,t2] domain shown. For

Continued from Page 10
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  P(T > t1  I  T � t1 + t2 |T > t1) = P(T > t1  I  T � t1 + t2) /P(T > t1)  

Eq. 1
confidence intervals between 95% and
99%, the uncertainty ranges between
±2% (�=0.05) and ±5% (�=0.01), respec-
tively.  

We have not fully explored the uncer-
tainties that attend such projections.
Besides the uncertainty associated with
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natural nonstationarity, it is also desirable
to consider how the quality of the recon-
struction will affect the distribution
parameters. Where multiple reconstruc-
tions of the same climate index are avail-
able (at least four exist for the PDO) the
uncertainty due to the inability of the
reconstructions to perfectly emulate the
climate process can be estimated by apply-
ing the above methods to the multiple
reconstructions, rather than to segments of
a single reconstruction. Only one recon-
struction yet exists for the AMO, so we
have not done this. 

Fig. 3 is only one example of a poten-
tially useful climate risk projection tool.
Thus for any given year in which decisions
are made, one can also construct a graph
showing the distribution for                        ,
where ta (abscissa) and tb (ordinate) define a
time range, e.g. 10-15 years into the future.
The present risk of an AMO shift between ta
= 2015 AD and tb =2020AD is about 19%.
Such a graph can be transformed from Fig.
3 by subtacting the probability for t1=10,
t2=ta from that of t1=10, t2=tb.

The application illustrated here has its
limitations. One is that it uses the zero
value of the index to separate just two
states—above and below zero. This allows
the possibility of classifying as a climate
regime an interval where the index may not
rise significantly above a value critical for
impacts to occur. It is obviously advisable
that the method be modified to account for
neutral range as well as high and low
ranges beyond appropriate thresholds.

Other, more esoteric projections can
be developed. McCabe et al. (2004) have
shown how the uncorrelated +/- phases
of the PDO and AMO have juxtaposed
since the mid-19th century in ways that
plausibly explain mega droughts in the
southwestern and Midwestern U.S. If
both oscillations can be statistically mod-
eled as we have done here only for the
AMO, it is possible to develop joint
probability projections for the four possi-
ble phase-phase scenarios (+/+. +/-. -/-. -
/+), under the assumption that the climate
oscillations are mutually independent. It
is also possible to query the conditional
probability for regime interval magni-
tude or intensity — based on the index
area subtended between zero crossings

Fig. 2. Upper panel: histogram (vertical bars) of zero crossing intervals from a

set of five resampled and smoothed versions of the Gray et al. (2004) index

and the maximum likelihood (MLE) gamma probability distribution (solid

curve) fit to the histogram. Lower panel: cumulative empirical distribution (ver-

tical bars) and gamma cumulative distribution function (solid curve), indicating

that the Kolmogorov-Smirnov goodness-of-fit criterion is satisfied at the 95%

significance level.
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It is important to point out that the
usefulness of these methods for actual
applications will depend on the nature of
the application, the strength of the con-
nection between the climate mode and the
target variable, and managers’ ability to
utilize the projections in making opera-
tional decisions. In general, the closer the
relationships of the modeled index to the
decision-triggering target variables, the
better. Thus, if a proxy reconstruction of
stream flow exists, this may be more use-
ful to model than the climate mode whose
association with the stream flow is less
than perfect. However, projections based
on a climate mode have the advantage of
being appropriate over a wider range of
applications and geographic regions. 

Finally, the ultimate uncertainty for
which there is no sure remedy at present,
is the effect that global climate change
will have on future climate regime charac-
teristics.  However, it is worth noting that
if the true future distribution parameters
are different from those in the past, the
effect on risk projection (as shown in Fig.
3) is to shift all probabilities in the same
direction and by similar amounts. Hence,
the relative change in probability from
one part of the domain to another is little
affected by a parameter discrepancy.
Arguably, the evolving change in risk is
more likely to influence management and
policy adjustments, than is the absolute
risk at a given position, as long as the
errors are within reasonable bounds. In
fact this principle applies to all sources of
uncertainty.
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Fig. 3.
Distribution of
the probability

of an AMO
regime shift

occurring
wthin t2 future

years (ordi-
nate) given

that t1 years
(abscissa) have

elapsed since
the last regime
shift. Based on

the gamma
distribution

with scale and
shape param-
eters of 10.3

years and
1.93, truncat-
ed for t1 + t2 >

5 years 
(see text). 

— given an interval of a certain length. 
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We have shown how a multi-century
proxy reconstruction of a climate index
may be used to estimate the pdf of climate
regime intervals, thus providing a basis
for the projection of climate risk and the
eventual development of useful decision
support tools. The spectrum preserving
resampling of the time series provides suf-
ficient sample sizes for pdf estimation
using the gamma distribution. We have
given a detailed example of a derived cli-
mate risk projection and have suggested
others that can be developed. 

Consider the situation in 1990, more
than 20 years into a period of cool North
Atlantic sea surface temperatures (AMO)
associated with dry conditions in Florida,
wet conditions in the southwestern region
and less frequent hurricanes. It is not dif-
ficult to imagine management decisions
that could have been made then as an
AMO reversal became imminent within
operational time horizons. Where water
was expected to become more plentiful,
flood control measures could have been
implemented and development on flood
plains discouraged. Where more persist-

ent and/or frequent droughts were expect-
ed, more water could have been shunted
to aquifer storage, water access leases
shortened, reservoir withdrawals reduced,
conservation measures implemented and
agricultural practices modified.
Underwriting associations could have
increased the funding of windstorm con-
tingency pools in anticipation of more fre-
quent, destructive hurricanes. 

D2M climate risk assessment is not
useful only when a climate shift becomes
imminent. In general, for any policy or
measure that can be adopted in anticipa-
tion of a change, there exists an alterna-
tive to be followed if the probability of
change is low. Policies may be reviewed
periodically in light of changing probabil-
ities and the spectrum and effectiveness of
available mitigation measures can be
revised on a regular basis. Cognizance of
the changing nature of climate and its
impacts is a relatively recent development
and it has taught us that effective manage-
ment should not be based on static poli-
cies. Perhaps the best example of this les-
son is the recent increase in destructive
hurricane potential related to the change
in the AMO climate regime and its impact
on the insurance industry. 



Over 50 U.S. CLIVAR Panel members
(including representatives from the previ-
ous regional panels), interested scientists,
and agency representatives attended the

first U.S. CLIVAR Summit, August 15-20, in Key-
stone, Colorado (ironically, in Summit County!).
Everyone enjoyed the scenic location and availability
of nearby recreational diversions during this inaugural
meeting of the reorganized U.S. CLIVAR. Unfor-
tunately, rockslides on the interstate between Denver
and Keystone made for longer driving trips for many. 

The purpose of the Summit was to consider and
chart the future of the U.S. CLIVAR program in the
three broad areas that correspond to our new Panels:
Phenomena, Observations, and Syntheses (POS),
Process Studies and Model Improvement (PSMI), and
Predictability, Predictions, and Applications Interface

(PPAI) and to continue forward momentum of activi-
ties in various stages of planning and implementation.
The first portion of the meeting focused on highlight-
ing the national, international, and agency program
context of CLIVAR, and important linkages to U.S.
CLIVAR. GEWEX and the Ocean Carbon Cycle pro-
vided updates on their programs and suggested areas
for potential linkages to U.S. CLIVAR. The Panels
(Table 1) were then charged to develop long-term and
near-term objectives, determine the scientific activi-
ties required to achieve these objectives, and identify
specific Panel actions that will be undertaken to facili-
tate progress. Additionally, the Panels were asked to
consider how activities in various stages of planning
and implementation will (or could) contribute towards
these objectives and how these activities should move
forward. The Panels met individually, with each other,
and with agency program managers over the course of
a few days to begin building their strategic visions,

identifying issues common to more than one Panel, and
discussing a range of specific activities. They also dis-
cussed topics for Working Groups (small, focused
groups, with limited lifetime) to accelerate implementa-
tion and coordination in critical areas. 

The Panels presented their plans and recommenda-
tions (which were still very much in draft form) in plena-
ry. The initial issues and objectives the Panels considered
and raised at the Summit were very exciting and resonat-
ed with the agencies. The Panels embraced the historical
directions of the program and also took great steps
towards identifying overarching objectives that covered a
range of time scales from subseasonal to decadal and
longer, vexing challenges for which community-wide
engagement is required, and phenomena of great interest
to the scientific and decision-making communities for
which we need additional research to understand, charac-

terize, assess predictability
of, and develop prediction
capabilities. Agency pro-
gram managers provided
very positive feedback on
the planning achieved at
the Summit and encour-
aged the Panels to move

forward quickly to flesh out their plans. 
The three Panels are now carefully building on their

Summit discussions, and talking to other Panels so that a
cogent and balanced strategy is developed. The Panels
will be completing brief written strategy documents over
the next several months. Our plan is to complete draft
overviews of Panel plans this Fall after which they will
solicit community (both national and international) input
and reactions as we begin to more fully engage the
agency programs and the community to address the chal-
lenges identified in these plans. 

Progress towards these community plans can be mon-
itored through the U.S. CLIVAR web site (www.uscli-
var.org).  Announcements about the availability of draft
US CLIVAR strategies will be distributed through emails.
We encourage the community to provide feedback to
these planning efforts through the U.S. CLIVAR Office,
through our web page, or through the Panel co-chairs and
Panel members.

Report on First U.S. CLIVAR Summit
by David M. Legler Director, U.S. CLIVAR
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Phenomena, Observations, and Syntheses 
(POS) 

John Marshal (MIT), Sumant Nigam (Univ 
of Maryland) 

Process Studies and Model Improvement 
(PSMI) 

Meghan Cronin (PMEL), Paul Schopf – 
interim (George Mason University) 

Predictability, Predictions, and 
Applications Interface (PPAI) 

Lisa Goddard (IRI), Alex Hall (UCLA) 

Table 1: List of U.S. CLIVAR Panels and Co-Chairs



U.S. CLIVAR OFFICE
1717 Pennsylvania Avenue, NW
Suite 250
Washington, DC 20006

Subscription requests, and changes of address 
should be sent to the attention of the 
U.S. CLIVAR Office (usco@usclivar.org)

U.S. CLIVAR
U.S. CLIVAR Salinity Working Group

The first working group formed under the restructured
U.S. CLIVAR is the Salinity Working Group, which will
hold its first meeting following the Ocean Sciences

Meeting 2006 on February 24-25 in Honolulu, Hawaii. The
Salinity Working Group is tasked with reporting to the
Phenomena, Observations and Synthesis Panel of U.S. CLI-
VAR within the first year of the group’s commencement. The
working group has several objectives including: 

• describing the role of ocean salinity in the global water
cycle, global ocean circulation and climate variability;

• providing guidance to NASA and the international com-
munity on observational and scientific activities to be consid-
ered in advance of and during the Aquarius mission;

• identifying the requirements and challenges for analyz-
ing, observing, and monitoring salinity.

In order to meet these objectives, the working group will
host a special session at AGU’s Ocean Sciences 2006 Meeting

in Honolulu, Hawaii. The special session, entitled The Role of
Ocean Salinity in Climate, will be moderated by the working
group co-chairs James Carton (University of Maryland) and
Ray Schmitt (Woods Hole Oceanographic Institute) and work-
ing group member Gary Lagerloef (Earth and Space Research).
Papers for this session are encouraged to look at understanding
the importance of salinity in climate variability, especially (1)
the influence of salinity variability on tropical dynamics and
ENSO; (2) large scale salinity changes in mid to high latitudes
that influence ocean convective overturning circulation; and (3)
closure of the global ocean-atmosphere freshwater balance.
The abstract deadline for Ocean Sciences 2006 is 20 October
2005. Meeting and abstract information is located at
www.agu.org/meetings/os06. 

Additional information regarding the U.S. CLIVAR Salinity Working
Group (including membership) can be found at: www.usclivar.org/
Organization/SalinityWG.html.


