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Goal: Separating the forced response from internal variability can be addressed in climate 
models by taking the average over a large ensemble. However, there is only one realization 
of the real world, making it a major challenge to isolate the forced response in observations, 
as is needed for accurate attribution of historical climate changes, for characterizing and 
understanding observed internal variability, and for confronting climate model trends with 
observations. In ForceSMIP, contributors utilized existing and newly developed statistical 
and machine learning methods to estimate the forced response during the historical period 
within individual ensemble members and observations. We can evaluate how well the meth-
ods performed in the large ensemble testbed before applying them to observations. 

Protocol in brief: • All participants were given access to 5 LEs (CanESM2, CESM2, 
MIROC6, MIROC-ES2L, MPI-ESM1-2-LR, all 1880-2100) on which to train methods
• The task was then to use any method to estimate the spatiotemporally evolving (monthly 
resolution) forced response in 8 fields (SST, surface air temperature, precip, SLP, monthly 
max. and min. temperature, monthly max. daily precip, zonal-mean air temperature) over 
1950-2022 (later stages will consider other fields over 1900-2022 and 1979-2022) in 10 
evaluation members (5 from unseen LEs, 4 from the training LEs, and 1 from observations)

Contributed methods: The charts below summarize different choices across the             
21 submitted methods 
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• There is no one best method for estimating the forced response. It depends on which metric you 
are interested in. The best option is to average over multiple methods. 
• ML methods (e.g., CNNs, ANNs) perform well, but only marginally better than linear methods 
(e.g., variants of LFCA, LIM, and linear regression), which have far few free parameters (as few as 
2 vs. as many as several million) and are less likely to overfit to the training data. However, ML 
methods are newer and may have more room for improvement. 
• Methods with similar skill in the model testbed (evaluation data) give very different estimates of 
the forced response in observations. There is substantial epistemic uncertainty in forced response 
estimates, and ForceSMIP helps to characterize it for the first time

• This work is in preparation for 2 publications, one focusing on evaluating statistical methods to estimate the 
forced response and one presenting a best estimate of the forced response in observations (1950-2022) for 
all 8 variables  
• There is still chance to contribute to tiers 2 and 3 (deadline Aug. 1, 2024). See sites.google.com/ethz.ch/ 
forcesmip/ or write me at r.jnglinwills@usys.ethz.ch for more information

Thanks to all participants in the 
ForceSMIP Hackathon (Aug 29-31, 
2023 at NCAR and ETH Zürich) 


