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4| Motivation and Background I

The bad: Coarse resolution model simulations fail to reproduce observed trends in the Pacific basin in, e.g., surface
air temperature and sea level pressure (e.g., Wills et al. 2022).

The good: High resolution initialized predictions better represent low-frequency variability, particularly in the
tropical Pacific and Southern Oceans (Yeager et al. 2022; Y22).

Our question: Do the resolution-related improvements found in Y22 extend to [coastal] sea level?
To address this question, we use altimetric observations to assess lead year 1-5 predictions of linear trends in dynamic
sea level from initialized low-resolution (DPLE) and high-resolution (HRDP) decadal prediction simulations,

conducted with the Community Earth System Model. Because basin-wide altimetry is only available after 1993, we
develop a longer verification dataset using >30 tide gauge records.

—

% Predictions of low-frequency dynamic sea level variability are greatly improved in HRDP relative to the
DPLE in the tropical Pacific, Southeast Pacific, and Southern Oceans

% Improvements are evident over long (>5 year) forecast lead times in the eastern Pacific, consistent with
analyses of surface temperature and sea level pressure (See Y22, and Ping Chang’s presentation Friday
for potential mechanisms underlying improvements).

% HRDP improvements persist over the pre-altimeter era, at basin- and local-scales, although the period of
comparison is short and observed trends are weaker

% Tide gauge records suggest that the altimeter-era zonal dynamic sea level dipole was preceded by a
multidecadal sea level trend of opposite sign

1 Conclusions

Altimeter-era dynamic sea level trends I
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Consistency of linear trends (1993-2019)
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Consistency of linear trends between models (forecast year 1-3) and altimetry (3-year rolling

mean). (Top row) Shading represents the differences in ensemble-mean linear sea level trends T — A
and altimetry for HRDP {left) and DPLE (right). (Bottom row) Model-data consistency in linear Cr
trends, expressed as ‘tension” (T) between linear trend estimates. Stippling indicates T>1.

Sensitivity to forecast lead year
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Sensitvity of predictions to forecast lead year. Linear trends from altimetry (lef), and the differences between altimetry and HRDP (middle; mean of ensemble
members), and DPLE (right; mean of ensemble members) over the time windows indicated), as a function of forecast year. Al datasets have been sampled to match
the every-other-year temporal sampling of HRDP. The number in parertheses indicates the sample size used for trend computation. Stippling indicates T>1.

{ Extending the comparison using the tide gauge record I—
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(Lefy) 1950-2021 distrended tide gauge sea level fter removal of the i imerso baromster s!fect (usmg ERAS) and giobal mean sea level change (using MEASURES
GMSL prockc. A crteron of o yoas with mising ata provides a of tide gauges across the basin. While 1950-2021 trends are explicitly
removed, nonlinearities and apparert trends over shorter intervals are not. (Rtght) 19-ysar ow, pass fitered sea level anomaly. Note nor+inear behavior that differs in
Sign west and east, with a declining trend evident after 1990 that s strongest on the easter mrgin of the basin.
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Principal component analysis indicates a basin scale mode in the tide gauge rscord (Left) EOF from altimetry and tide gauges (3-year rolling mean) over the 1993-
2021 period. (Right) PC1 from various EOF analyses for altimetry, and from tide gauges, using different time periods and techniques, including low-frequency
component analysis (Wils et al, 2020). EOF1 patterns from tide gauges are very similar across fime periods and techniques.

Basin-scale variability
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Comparison of leading EOFs from tide gauges and model simulations. (Top
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Ensemble mean trends are weaker in both HRDP and DPLE before 199:
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itis difficult to see a clear improvement in the 1976-1993 period. -
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