

Method : using large ensembles and ML to model spatiotemporal forced response

3D Pr input : lat x lon x [t-10 to t years]

185 members x 63years x lat x lon x 10 time lags (1959-2022)(5 large ens)

-0.006

Estimation of forced trends of regional precipitation using large ensembles and ML

Gavin D. Madakumbura¹, Céline Bonfils², Stephen Po-Chedley², Jia-Rui Shi³, Jesse Norris¹, Chad Thackeray¹ and Alex Hall¹ ¹UCLA, ²LLNL-PCMDI, ³WHOI

Year t forced response

Test member 1

Test

185 x 63 x lat x lon

Model performance : trend calculated from the predicted and original spatiotemporal data (1959-2022) (mm/d/year)

Acknowledgments

We would like to thank the organizers of the Forced **Component Estimation Statistical Method** Intercomparison Project (ForceSMIP). Brainstorming during the ForceSMIP hackathon motivated this study. We gratefully acknowledge the support from the support from the Regional and Global Model Analysis Program for the Office of Science of the U.S. Department of Energy through the Program for Climate Model Diagnosis and Intercomparison.