Coupled climate models systematically underestimate
radiation response to surface warming
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1. GCMs underestimate the observed TOA radiation trend
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global mean TOA radiation trend (Fig. 11).
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observed surface warming, TOA radiation
trends are more likely under- than
overestimated.
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GCMs better represent the observed surface warming (Fig.
1m) than TOA radiation trends, suggesting that biases of
surface warming alone cannot explain the systematic
underestimation of the TOA radiation trend.
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3| Surface warming patterns and atmospheric
physics matter for the observation-model
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3. Causes for the response bias

2. Underestimation caused by too weak local surface-TOA coupling
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substantially better than the ones in GCMs [10,11].
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4. Response bias reflects in EffCS

The response bias metric is a new line of evidence that low-EffCS models more realis- in AN-AF regressed against AT for both
simulations and observations. b
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