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Why should we care about near surface atmospheric humidity?
(1) Humidity is an important quantity in relation to wildfirel.
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Here we compare historical near surface (2m) humidity trends in Earth | |
System Models, with those in Observations and demonstrate a major We consider trends in annual means from 1980 to 2020 unless As a result, relative humidty
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05- R linear regression across the CMIP6 models VP* = a + bPR. We can
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Over arid/semi-arid regions, observed humidity trends are lower
than modelled trends, regardless of precipitation trends (Fig 6).
Over arid-semi-arid regions, there has been no rise in specific-
humidity on average (Fig 7c), despite rising temperatures (Fig

Fig 3: Annual mean 1980 to 2020 trends in VP versus precipitation over the US Southwest
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