InteRFA

ABSTRACT

Earth System Models (ESMs) included in the Coupled-Model-Intercomparison Project (CMIP) are considered sophisticated in their ability to project the impacts of future climate on important hydroclimatic variables and Earth system processes. However, little is known about their performance against observations across standard hydrological metrics, which hampers our ability to understand their actual utility for simulations under a changing climate, particularly for high-latitude environments due to Arctic amplification. We assess the performance of simulated Arctic runoff that has been routed to river channels using a physically based river routing model, Model for Scale Adaptive River Transport (MOSART), from eleven CMIP6 models. Specifically, we investigate the ability to represent streamflow variability including high and low flows as well as seasonality in the Arctic. We focus on discussing which temporal resolution is necessary for the given application to understand future change. Our results indicate that while one-to-one comparisons between ESMs and observations usually result in poor performance, particularly at the daily scale, the ESMs demonstrate some skill in prediction at coarser timesteps or when techniques such as statistical averaging and best-fit model selection were used. Research outcomes from these projects are anticipated to be useful for understanding the most appropriate applications for ESMs when attempting to understand changes under a future climate.

METHODS

<u>Models</u>	0			Observations N	
CMIP6 Models	Origin	Land Model Component	Resolution (degree)	T 60°N O'N	
BCC	China	BCC-AVIM	· # 21 - 6	TO A CONTRACT OF	to a second
CanESM5	Canada	CLASS-CTEM	<i>125</i>	120°V	
CESM2	U.S.	CLM			S C S A
EC-Earth4	E.U.	HTESSEL	N 07	10°N 90	
E3SMv2	U.S.	ELM			
GFDL-ESM4	U.S.	LaD Model			
IPSL-CM6a-LR	France	ORCHIDEE	ż Ż	0° 0°	East
MIROC6	Japan	MATSIRO	1.4		3 An
MPI-ESM	Germany	JSBACH	0.9375		
MRI-ESM2-0	Japan	AGCM	1,125	• 315 gr the wheele	bry
Nor-ESM2-LM	Norway	CLM	2	• Date onthy an	2 al (19
				• Owners ap. 55 G	eologica

Model for Scale Adaptive River Transport

- Takes in 0.5-deg runoff from CMIP6
- Divides water into hillslope runoff, surface/subsurface tributaries, channel flow
- Uses kinematic wave approach to rout water through steep channels and diffusion wave for flat reaches
- No exchange between land and atmosphere

Observations

CMIP6 Models	Agency Ownership	Number of Records	Mean Record Length (yr)	Range Record Length (yr)	Mean Basin Size (km²)		
Daily	USGS	8	50.6	36.7 – 70.0	231,920		
Daily	Hydat	152	60.8	36.0 - 159.0	127,181		
Daily	SHI	21	57.2	37.8 - 74.0	28,491		
Monthly	USGS	8	50.6	36.7 – 70.0	231,920		
Monthly	Hydat	152	60.8	36.0 - 159.0	127,181		
Monthly	SHI	159	58.0	36.2 - 117.8	169,817		
Annual	USGS	8	50.6	36.0 - 159.0	231,920		
Annual	Hydat	152	60.8	36.7 – 70.0	127,181		
Annual	SHI	159	58.0	36.2 - 117.8	169,817		

Metrics

Metric	Abbreviation	Temporal Resolution	Description				
Pearson Correlation Coefficient	PCC	Daily, Monthly, Anuual	Ratio between the covariance of model and o of their standard devia				
Normalized Root Mean Square Error	nRMSE	Daily, Monthly, Anuual	The standard deviation of residuals (different observation)				
Nash Sutcliffe Efficiency	NSE	Daily, Monthly, Anuual	One minus the ratio of error variance of the r by the variance of the observe				
Center Timing	СТ	Daily	The Julian Day in which half the volume o through a given poi				
7-day mean low flow	7Q10	Daily	The lowest mean 7-day flow that occur				
100-year return period high flow	Q100	Daily	The peak flow that occurs once e				
Mean Annual Flow	MAF	Daily, Monthly	The mean annual flow occurring ov				
Seasonality Index	SI	Monthly	The level of seasonal variation in streamflow streamflow volume spread uniformly across streamflow volume is concentrate				
Peak Flow Month	PFM	Monthly	Month when peak monthly				

Representing streamflow observations from Earth System Models at different time scales

Kurt C. Solander¹, Tian Zhou^{2,} Katrina E. Bennett¹, Jon Schwenk¹ ¹ Los Alamos National Laboratory, Los Alamos, NM USA ² Pacific Northwest National Laboratory, Richland, WA USA Contact information: ksolander@lanl.gov

observation and the product

rence between model and

modeled time series divided ed time series

of streamflow has passed

rs once every 10-years

every 100-years

ver a given period *i*: values vary from 1, where all months; to 12, where all ed in single month flow occurs

RESULTS AND DISCUSSION

Model Temperature & Precipitation

- Models tend to over-predict Q100 high flow, but under-predict 7Q10 low flow
- Little to no seasonality in flows over eastern Canada, stronger seasonality in Russia
- Models tend to underpredict both CT and SI

Individual Model Bias: Mean Annual Flow

Cumulative Model Bias: Inverse Percentile

Annual timestep and interior Canada lower performance for capturing variability (PCC & NSE) but better at capturing model bias (nRMSE)

Latitudinal gradient present for center timing with CT occurring later in year for more northern latitudes and earlier for southern latitudes

Best-fit model approach represents CT & SI well with notable poorer performance (underprediction) persisting over central to eastern Canada

Precipitation-Temperature biases for fairly equal CMIP6 models indicate representation across four quadrants: warm-dry, warm-wet, cool-dry, cool-wet

Office of

Science

- CMIP6 models tend to be biased low relative to observations for low flows but perform better for high flows.
- High biases tended to persist through individual metrics mean annual flow and Q100 high flows, although 7Q10 low flow and center timing biased low for most models

Next Steps: Outcomes from this study can inform which aspects of streamflow change under future climate should be considered, given the fidelity of the models. Future efforts can then involve comparing future changes in streamflow across models, as appropriate.