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• Globally connected multidecadal climate 
variations (MCV) are observed on top of non-
uniform global warming trend (Deser and Philips 
2017; Kravtsov et al. 2018)

• This signal may represent internal variability or 
reflect complex teleconnectivity of the forced 
climate response

• A distinct multidecadal signal in the reanalysis variability was robustly detected despite 
the short observational period and sparse data coverage early in the timeseries  

• Leading component has the spatial pattern similar to that in Deser and Philips (2017)
• An equally important second component in quadrature with the first one leads to a 

propagating signal
• Agreement between regional and global MCV signals indicates true global 

teleconnectivity of the observed MCV; the identification of this signal is not susceptible to 
uncertainties associated with missing data and end effects

• The lack of this signal in CMIP simulations may be due to the models misrepresenting 
either climate response to external forcings or internal climate variability

Figure 4: Spatial plots showing (a,c)  the first and (c,d) second EOF patterns projected onto (a,b) 
20CRv3 and (c,d) ERA20C SAT data. (e) Taylor diagram for patterns 1 (blue) and 2 (red) for ERA20C 
and 20CRv3 with EOFs based on selected regions, artificial data holes that were then filled, and 
extended timeseries

• Utilize ensembles from 38 CMIP5/6 models to estimate the forced signal
• Ensemble mean tends to cancel out internal variability, leaving forced signal
• Truncated expansion into signal-to-noise (S/NP) maximizing patterns (Wills et al. 

2020) instead of the raw data allows one to better isolate the forced signal patterns 
in small ensembles 

• Subtract the forced signal(s) estimated from reanalysis / climate model data to obtain 
estimates of internal variability

• Identify dominant variability in observations and models using multichannel singular 
spectrum analysis (M-SSA: Ghil et al. 2002) 

• Result: optimally filtered MCV signal in observed and simulated climate estimates
• Reanalyses spectra dominated by leading pair
• Less variance and less separation from the leading pair in model data
• Projection of simulated signal onto reanalysis EOFs shows negligible variances 

indicating that the observed signal is muted in simulations

Figure 3: Variance plots showing 
space-time variance of (a) 
20CRv3, (b) ERA20C, and (a,b) 
CMIP5

Figure 2: (A) Timeseries of observed forced signal (left column) and ensemble 
average (right column) of  pattern 1 (top row) and  pattern 2 (bottom row) 
projected onto SAT grid data, (B) Fraction of forced signal variance explained by 
S/NP modes for each forced signal estimate, and (C) AMO and PMO index 
forced-signal in model 22 with the full estimated signal (red), reconstruction by 
S/NPs 1–5 (blue) and the difference (black).

Figure 1: Deser 
and Philips 
(2017) Figure 
2; Spatial 
patters of EOF-
1 (a, b, c) and 
PCs (e,f,g) 
based on 
regional data 
subsets (black 
box)

• Use S/NP analysis to both identify forced signals in the individual-model 
ensembles and to analyze the spread of the forced signals estimated in the
38 forced-signal estimates (Fig. 2A)

• The common part of the estimated forced-signal evolution is dominated by S/NPs 1–3 (1 and 2 shown in 
Fig. 2A ) and explains 80% of the forced-signal variance across the forced signal ensemble (Fig. 2B)

• The remaining 20% are due to individual responses specific to each model. Forced-signal responses of some models 
are substantially different from the forced-signal evolution common in the ensemble and exhibits anomalous responses 
on multidecadal time scale characterized by apparent global “teleconnections” (Fig. 2C) 

• This is one possible reason for observed globally-connected MCV

• Perform an ensemble EOF analysis on M-SSA-filtered data MCV anomalies and rotate the leading 
EOFs so that rotated PC-1 is most correlated with AMO and PC-2 lags PC-1 in time

• AMO-like patterns (Figs. 4a,c) match Deser and Phillips over the oceans with exclusion of SO
• MCV includes the 2nd lagged  AMO-orth pattern describing the “propagation” of the multidecadal 

signal (Figs. 4b,d)
• Patterns in relative agreement with each other between two reanalysis datasets (Figs. 4a,b and 

c,d)
• The above analyses were repeated using 1) using regional, instead of global M-SSA analysis; 2) 

reanalysis data with original data gaps reintroduced and filled using covariance-based 
imputation techniques; and 3) extended reanalysis time series, extrapolated into the future and 
the past using linear inverse models, to gauge the sensitivity of the analysis to the ends

• The similarities between the patterns stemming from the regional and global MCV signal (Taylor 
diagrams in Fig. 4e and ensemble-mean time series in Fig. 5a,b) indicates the true global 
teleconnectivity of the MCV

• Reconstructed gaps do not impede the MCV signal detection, shown by the reconstructed gaps 
diamonds; this is consistent, again, with the global teleconnectivity of  the MCV signal

• Ensemble-mean timeseries 
describing the evolution of AMO-
like and AMO-orth components 
of MCV (Fig. 5) show agreement 
between the different versions of 
analysis (global vs. regional, the 
one with imputed data gaps, and 
the one based on the extended 
timeseries)

• The largest differences in the 
evolution occur between the 
original MCV reconstruction and 
the one based on time-extended 
data (Figs. 5c,d)

• Still, the same overall 
multidecadal evolution is easily 
identifiable in both time series
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Figure 5: Ensemble-mean time series showing the evolution of (a) AMO-like and (b) AMO-orth patterns 
estimated using different versions of our analysis (see above); (c, d) the same as in (a, b) but for all ensemble 
members using 20CRv3 global and time-extended analyses. 
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