The long-term trends of land precipitation and the fast responses to BC and SO₄ aerosols in GFDL's climate models

dryer

Motivation and Objectives

Precipitation change is critical for ecological studies and societal decisions. Aerosol effects are one of the biggest uncertainties in 2. climate model simulations and projections. **Objective** Assess the simulations of **long-term precipitation trends** by the GFDL **ESM4** and **CM4** models. Understand the role of anthropogenic aerosols (AAs) in 2. precipitation changes and model biases. **Point I: ESM4 and CM4 simulate dry trend bias in land** precipitation, related to aerosol effects **Experiment 1** • GFDL's climate model (CM4) (Held et al., 2019) and Earth System Model (ESM4) (Dunne et al., 2020) are used to analyze the long-term precipitation rend (1915-2014). **ESM4** and **CM4 all-forcing** and **forcing subset** experiments are driven by observed forcing agents: *aer*, *GHG*, *nat*. **GPCC** observation The long-term trends of 45°-80° N precip by Obs and model 15°-45° N all-forcing simulations (1915–2014) ESM4 and CM4 simulations show significant dry trend ESM4 all-forcing **bias** in extratropical NH: 45°-80° N The observed 15°–45° N increasing trends over 45°–80°N are underestimated. 2. The simulated decreasing trend over 15°–45°N is stronger CM4 all-forcing than Obs. 3. The Obs-Model 45°-80° N discrepancies are not 15°–45° N due to internal variability.

wetter

Yanda Zhang ^{1,3}, Thomas Knutson ², Elena Shevliakova ², and Daniel Westervelt ¹

¹ Lamont-Doherty Earth Observatory, Columbia University ² NOAA/Geophysical Fluid Dynamics Laboratory ³ Atmospheric and Oceanic Sciences Program, Princeton University

climate models. Journal of Climate.

Email: yzhang@ldeo.columbia.edu yanda.zhang@noaa.gov