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Abstract
It is natural to inquire how clouds in a laboratory convection cloud chamber (“clouds in a 
box”) are related to clouds in the atmosphere (“clouds in the sky”). In what follows, we 
describe the basic scalings that govern how cloud droplets grow in an adiabatic ascending 
parcel and in a convection cloud chamber.


Clouds in the atmosphere are most often a result of adiabatic cooling of ascending air. A 
convection-cloud chamber produces a cloud by mixing warm saturated air with cool 
saturated air. Mixing is due to convection and turbulence.


In a convection-cloud chamber, such as the Pi Chamber at MTU, aerosols are continuously 
injected. The aerosols grow into cloud droplets which eventually fall out by sedimentation.

Because the droplet fall speeds are small compared to the turbulent flow speeds, the droplets 
mostly ``go with the flow”. As a droplet grows its fall speed increases with the square of the 
droplet radius (Stokes' drag law). Consequently, the droplet is increasingly likely to fall out as 
it grows.


The rate of aerosol injection is eventually balanced by the rate of droplet fallout. In addition, 
the loss of liquid water by fallout is balanced by condensation, and the condensation is 
balanced by evaporation from the walls. The result is a thermodynamic state and droplet size 
distribution in equilibrium.
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Cloudy Rayleigh-Benard convection produces a mixed layer.
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FIGURE 1. A thermodynamic vapour-pressure–temperature diagram illustrating the
formation of supersaturation through isobaric mixing. An idealized mixing process of two
saturated air parcels at different temperatures, Th and Tc (dashed line) and its comparison
with the saturation (equilibrium) vapour pressure curve (blue line).

scalars involved in the problem which are advecting and diffusing. However, in the
traditional double-diffusive convection, scalars usually have opposite contributions
to the buoyancy and/or have opposite diffusive fluxes. In the current case of moist
convection, both scalars contribute to positive buoyancy and diffusing in the same
direction; therefore, it is closer to traditional R–B convection. Indeed, the current
case can be expressed as single component R–B convection driven by a difference
in virtual temperature. The novel aspect considered here is to explicitly consider the
diffusivity difference between the two scalars, as expressed through the Lewis number
Le ⌘ Dt/Dv. The relevance of Lewis number and differential diffusivity is motivated
by the water vapour supersaturation, described next.

1.2. Supersaturation from two scalar fields
Supersaturation is central to cloud formation, whether it be in the earth’s atmosphere
(Bohren & Albrecht 1998) or in the atmospheres of other planets and stars (Burrows
et al. 1997; Marley et al. 2013; Kreidberg et al. 2014). Taking water vapour as an
example, supersaturation depends upon the two scalar fields’ temperature and water
vapour mixing ratio through the water vapour pressure: s ⌘ (ev/ev,s(T)) � 1. Here, ev

and ev,s are the water vapour pressure and saturation (or equilibrium) vapour pressure,
respectively. The latter is expressed by the Clausius–Clapeyron equation, ev,s(T) /
exp(�L/RvT), where L is the latent heat of vaporization, Rv is the mass-based gas
constant for water vapour and T is the temperature (Bohren & Albrecht 1998; Lamb
& Shaw 2016).

In turbulent R–B convection, scalar fields are advected and diffused, resulting in
their mutual mixing. An idealized view of the mixing of two saturated air parcels is
shown in figure 1, which depicts a thermodynamic space consisting of temperature and
water vapour pressure. The equilibrium (Clausius–Clapeyron) curve is shown, and the
mixing is assumed to take place between two air parcels with temperatures Th and Tc
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Cloud-convection chamber particle trajectories (from DNS)

DNS data from Theodore MacMillan and David Richter
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Droplet Growth in an Adiabatic Ascending Parcel

• Mean supersaturation, , and droplet growth time, , combine to produce the radius, , 
of an individual droplet: 

s̄ τ r(τ)

• In an ascending parcel, , where N is droplet number concentration (Korelev & 
Mazin 2003).


• At height  above cloud base, , so 


• ,


•  so LWC 

s̄ ∼ w/(Nr̄)

z τ = z/w

r2(z) ∼ s̄ τ ∼ z/(Nr̄)

r3(z) ∼ z/N ∼ Nr3 ∼ z .

r2(τ) = r2(0) + 2ξ1 ∫
τ

0
s dt

dr2

dt
= 2ξ1s (integrate over time)

Droplet Growth in a Convection Cloud Chamber 

• Mean supersaturation, , and droplet growth time, , combine to produce the radius, , 
of an individual droplet.

s̄ τ r(τ)

• In a convection cloud chamber:


•  (Shaw et al. 2023), where  is the temperature difference across the 
chamber height .


•  (Krueger 2020). 


• . Solution is .


• .

hs̄ ∼ (ΔT2/N)4/5 ΔT
h

τ = h
k1r2

→ τ
h

= 1
k1r2

r2 ∼ s̄ τ ∼ (ΔT2/N)4/5

r2
r2 ∼ ΔT4/5

N2/5

LWC ∼ Nr3 ∼ (ΔT)6/5N2/5

Supersaturation Equation

convection-cloud 
chamber
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τres = H/vT . The terminal speed is assumed to follow Stokes
drag law, such that vT = 2ρl gr2/(9µ), where µ is the dynamic
viscosity of air and g is the gravitational acceleration. This
simple assumption for the removal time scale τres is valid in
the “stirred-settling” limit, and may need to be revised for
drops with large inertia, etc. [25].

We observe that ṁcond = ccondnrs and ṁsed = csednr5, so
we expect it should be possible to obtain an expression for
n as a function of r. As anticipated in the previous section,
however, supersaturation depends on the condensation rate
and therefore is also a function of n and r. The supersaturation
must be obtained by Eq. (4), but including a term accounting
for depletion due to droplet growth [26]

ds
dt

= 1
τt

(s0 − s) − s
τc

, (8)

where τc is the phase relaxation time. It is given by

τc = (4πD′nr)−1, (9)

where D′ = ρlξQ2/ρv,s. Here, Q2 accounts for the decrease
in supersaturation due to depletion of the water vapor mixing
ratio due to droplet growth [26]. It follows then, that in steady
state the supersaturation can be written as

s = s0

(
1 + τt

τc

)−1

. (10)

By equating Eqs. (6) and (7) the expression for cloud
droplet number density then becomes

n =
(

ccond

csed

s0

r4
− 1

)
1

τt 4πD′r
. (11)

Alternately, this can be expressed as

n =
(

ṁcond,0

ṁsed
− 1

)
1

τt 4πD′r
, (12)

where ṁcond,0 is the condensation rate that would exist at the
cloud-free supersaturation of s0.

B. Cloud droplet number budget

Again, steady state is assumed, such that the rate of CCN
injection and activation is balanced by the rate of loss by
sedimentation, ṅin = ṅsed. The rate of injection per unit vol-
ume ṅin is a constant that is externally controlled. The rate of
loss through sedimentation is assumed to be proportional to
n/τres, with the residence time defined in the previous section,
such that

ṅsed = n
vT

H
= n

2ρl gr2

9µH
. (13)

Equating these rates and solving for n results in

n = ṅin
9µH
2ρl g

1
r2

. (14)

C. Solutions for microphysical properties

Equations (11) and (14) allow us to obtain a quartic equa-
tion for radius,

r4 +
(

18πµHD′τt ṅin

ρl g

)
r3 − 27ξµHs0

2ρl g
= 0. (15)

For a quartic of the form x4 + a3x3 + a0 = 0 the discriminant
is % = 256a3

0 − 27a4
3a2

0. Realistic values of the coefficients
lead to % < 0, ensuring that there are two distinct, real roots.
In our case only one is positive, and therefore is the allowable
solution.

Once a value for r is obtained, it can be substituted into
Eq. (14) or (11) to obtain the corresponding n. Then other
microphysical properties can be calculated, such as super-
saturation via Eqs. (9) and (10), and liquid water content
m = nρl4πr3/3.

Figure 1 shows the microphysical state of the system as
a function of ṅin, as obtained from the expressions derived
in this section. The results correspond to T0 = 284.16 K,
%T = 20 K, and H = 1 m. The supersaturation decreases
with increasing ṅin, approaching zero at high injection rate.
The droplet number concentration increases and the droplet
radius decreases with ṅin in such a way that the liquid water
content increases monotonically. A distinct shift in the be-
havior of the system is observed between log ṅin of −2 and
−1, and these two microphysical regimes will be explored in
Sec. IV.

D. Maximum achievable n and m: Threshold values
for critical supersaturation

In practice there is a limit to the number concentration
of cloud droplets that can be activated for a given set of pa-
rameters %T and H . This can be understood by assuming all
injected CCN are identical and have a critical supersaturation
of sc. Then the injection rate will have a peak value at which
the ambient supersaturation in the chamber is equal to sc, and
r, n and m reach maximum values. In that case we can write
the mass condensation rate from Eq. (6) as

ṁcond = nρl4πrξsc. (16)

Setting that equal to the sedimentation rate in Eq. (7)
results in

nρl4πrξsc = nρl
4
3
πr3 vT

H
, (17)

and we see that n cancels and we can solve for the radius
corresponding to the critical supersaturation,

rc =
(

27ξµHsc

2ρl g

)1/4

. (18)

This radius is the minimum value of cloud droplet radius that
can be achieved in the chamber, when fluctuations in supersat-
uration are neglected. (When fluctuations exist, it is possible
for CCN to be activated even when the mean supersaturation
is below the critical value [19], but that case is not considered
here.) The minimum radius, in turn, allows for maximum
values of n and m to be obtained,

nc = 1
4πD′τt rc

(
s0

sc
− 1

)
(19)

and

mc = ρl

3D′τt

(
s0

sc
− 1

)
r2

c . (20)
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to compare favorably with more complex, three-dimensional
models [21,22]. The paper proceeds as follows. First, an an-
alytical model is developed for the steady-state properties,
and it is interpreted in the limits of fast and slow cloud
microphysics relative to the turbulent mixing in the mixed
layer. Analytical scaling relationships between microphysical
variables are obtained, and in particular we investigate depen-
dence on the depth of the mixed layer. Second, the analytical
results are shown to match results from a time-dependent
model based on a coupled set of ordinary differential equa-
tions. Third, we compare the predicted scaling of liquid water
content to measurements in the Pi convection-cloud chamber
[23]. Finally, we conclude with a discussion of the relevant
dimensionless variables, the connection to bulk microphysics
with saturation adjustment, and aspects for future work.

II. THERMODYNAMIC MODEL FOR MOIST
RAYLEIGH-BÉNARD CONVECTION

The thermodynamics state within a turbulent convective
layer, such as that occurs in a convection chamber, is obtained
using the mean-field approach described by Thomas et al.
[21]. It is assumed that the fluid in the turbulent convection
layer is well mixed at temperature T . With no condensation,
the time rate of change of the temperature of the well-mixed
air can simplify to

dT
dt

= 1
τt

(T0 − T ) (1)

where T0 is the steady-state temperature that the fluid attempts
to reach and τt is the characteristic time. For example, if
we consider Rayleigh-Bénard convection with a bottom tem-
perature of Tb and a top temperature of Tt , T0 = (Tb + Tt )/2
and τt = Hλ/2α, where H is the height of the layer, λ is
the thickness of the viscous boundary layer, and α is the
thermal diffusivity of air (see Appendix A for a more detailed
development). The solution to Eq. (1) is

T = Tie−t/τt + T0(1 − e−t/τt ). (2)

Thus, the temperature evolves from the initial value Ti to
the steady-state value T0 at a characteristic time τt . We can
interpret τt as the turbulent-flux replenishment time of the
system.

A similar equation can be written for the water vapor
mixing ratio qv in well-mixed air. The evolution equation for
water vapor mixing ratio is

dqv

dt
= 1

τt
(qv0 − qv ), (3)

where qv0 is the steady-sate water vapor mixing ratio with
no condensation. Similarly, in moist Rayleigh-Bénard con-
vection, qv0 = (qs,b + qs,t )/2, where qs,b and qs,t represent
saturated water vapor pressure at bottom and top surfaces,
respectively. Strictly speaking, the time scale in this case is
equal to 2D/Hλ, where D is the diffusion coefficient of water
vapor in air, but practically speaking this can be taken as equal
to τt because D ≈ α.

By analogy, a water vapor supersaturation equation, with
no condensation, can be written as

ds
dt

= 1
τt

(s0 − s), (4)

where s0 is the cloud-free value of the supersaturation cor-
responding to qv0 and T0. A justification of Eq. (4) is given
in Appendix B; and the adequacy of Eq. (4) will be checked
later both computationally and experimentally (see Sec. V). In
moist Rayleigh-Bénard convection, an approximation of s0, as
detailed in Appendix A, is given by

s0 = 1
2

(
L$T

2RvT 2
0

)2

, (5)

where $T = Tb − Tt , L is the latent heat of vaporization, and
Rv is the gas constant for water vapor.

Equation (4) is fundamental to the microphysics within the
turbulent layer, so it is worth noting several points now. First,
when a cloud is present, such that s is small, the right-hand
side of Eq. (4) can be considered as a forcing term, equiva-
lent to an updraft strength or radiative cooling, namely, the
term that forces the development of supersaturation and the
formation of a cloud. Second, when condensation occurs in
the chamber the steady-state water vapor mixing field will be
slightly depleted and the mean temperature will be slightly
increased due to release of latent heat of vaporization. Those
shifts are δqv = qv − qv0 and δT = T − T0, and expressions
for these differences are given later. This can be included in
Eq. (4) as a loss term due to cloud droplet growth. The full
system is developed in Sec. III.

III. MEAN-FIELD MODEL OF CLOUD
MICROPHYSICAL PROPERTIES

We now consider cloud formation in the convective layer.
The well-mixed, bulk fluid contains a cloud of droplets with
radius r and number density n. The cloud is maintained in
steady state by injecting a constant flow of cloud condensation
nuclei (CCN), such that the cloud droplet activation rate is
equal to the rate at which droplets are removed by sedimenta-
tion. In the following subsections we consider a liquid-water
mass budget and a cloud droplet number budget. The resulting
equations are then combined to solve for r, n, and the liquid
water content m.

A. Liquid water mass budget

In steady state the rate of condensation is balanced by the
rate of loss of mass due to sedimentation, ṁcond = ṁsed. The
rate of change of liquid water mass per unit volume due to
condensation, assuming fixed n, is given by

ṁcond = nρl4πrξs. (6)

The parameter ξ is a weak function of temperature [24]. The
rate of change of liquid water mass per unit volume due to the
precipitation flux is

ṁsed = m/τres = nρl
4
3
πr3 vT

H
, (7)

where vT is the terminal speed of cloud droplets. Here we
have assumed that the residence time of a cloud droplet is

043018-2

ds
dt

= aw − s
τc
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• Supersaturation forcing: Vertical velocity ( ) corresponds to . 


• Droplet growth time: Decrease with increasing  corresponds to 
decrease with increasing .


• Mean radius: Height above cloud base ( ) corresponds to .


• Liquid water content:  corresponds to .

w ΔT

w
ΔT

Δz ΔT

Δz ΔT

Ascending parcel versus convection-cloud chamber

cloud base

cloud top

Schubert et al. 1979

Cloud-topped 
boundary layer

• Supersaturation forcing: Both decrease. 


• Droplet growth time: None for parcel; increases with  in chamber.


• Mean radius: Both decrease.


• Liquid water content: None for parcel; increases with  in chamber.

N

N

Dependencies on droplet number concentration

DSDs in ascending 
parcels

102

101

100

10-1

10-2

20151050

102

101

100

10-1

10-2

20151050

102

101

100

10-1

10-2

20151050

102

101

100

10-1

10-2

20151050

102

101

100

10-1

10-2

20151050

102

101

100

10-1

10-2

20151050

102

101

100

10-1

10-2

20151050

102

101

100

10-1

10-2

20151050

102

101

100

10-1

10-2

20151050

102

101

100

10-1

10-2

20151050

102

101

100

10-1

10-2

20151050

102

101

100

10-1

10-2

20151050

102

101

100

10-1

10-2

20151050

102

101

100

10-1

10-2

20151050

102

101

100

10-1

10-2

20151050

dr
op

le
t c

on
ce

nt
ra

tio
n 

(c
m

-3
µ

m
-1

)

droplet radius (µm)

 no entrainment + 
finite-rate mixing

entrainment +
finite rate mixing 

entrainment +
instant mixing 

Ti
m

e 
an

d 
H

ei
gh

t 

• Without entrainment: All 
droplet supersaturation 
histories are nearly the same, 
so the DSD is narrow. 


• With entrainment: 


• Supersaturation varies 
among droplets due to 
entrainment and mixing,    
so DSD is broad.


• Entrained CCN may be 
activated.

(Su et al 1998)
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Droplet life cycles in uniform supersaturation: A Monte Carlo model

r2

1. Droplets	are	injected	at	a	constant	rate.	

2. Droplets	grow	due	to	uniform	supersaturation:		 	

3. Due	to	turbulence,	droplet	locations	are	random,	so	fall	out	is	stochastic.

dr2/dt = As
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Figure 1. (Left) Radius squared versus time for 150 droplets growing by condensation in 10% supersaturation with probability of fallout

per unit time of u/h = k1r
2/h for h = 1 m. (Right) Frequency distributions of the radius squared from the Monte Carlo model (for 6000

droplets) and from the analytic solution (24) for the same parameters.

droplet grows by condensation at a constant rate, dr2/dt = 2�. As described previously in section 2.3, the probability that a

droplet will fall out in a small time interval �t is P = k1r2/h�t. Fall out is implemented by removing a droplet after a time

step if P < X, where X is a uniformly distributed random number between 0 and 1.

Figure 1 (left) displays the radius squared versus time for 150 droplets growing by condensation in 10% supersaturation.

The frequency distribution of r2 is easily obtained from the Monte Carlo results because it is equal to the average number of5

droplets present in each r2 interval at a given time. Figure 1 (right) compares the frequency distributions of the radius squared

from the Monte Carlo model (for 6000 droplets) and from the analytic solution (24) for the same parameters. This confirms

that (24) is indeed the equilibrium solution to (6). Note that the droplet injection interval (or rate) has no impact on the PDF of

r2.

The left panel of Figure 2 is the same as the left panel of Figure 1 except that the droplet fallout times are indicated by black10

circles. The droplet residence time, ⇥ , is the difference between the injection time, ti, and the fall out time, tf , and is practically

proportional to r2 at the fall out time because

r2(tf )⇥ r2(tf )� r2(ti) = 2�(tf � ti) = 2�⇥. (7)

The frequency distribution of droplet residence times is easily visualized from the Monte Carlo results. Figure 2 (right) com-

pares the frequency distributions of the droplet residence times from the Monte Carlo model (for 300,000 droplets) and from15

the analytic solution (54) for the same parameters. We used (7) to relate residence time to r2(tf ). Figure 2 (right) confirms that

(54) is the frequency distribution of the droplet residence times.

Figures 1 and 2 demonstrate that the r2 and residence time distributions are closely related because each is determined by

the stochastic nature of the droplet fallout process.

3

r2

(Krueger 2020)

Droplet Radius2 Distribution

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600

R
ad

iu
s2  (µ

m
2 )

Time (s)
00.0050.010.0150.020.0250.030.035

0

10

20

30

40

50

60

70

re
si

de
nc

e 
tim

e 
(s

)

fall outs per ! t = 2 s

 

 
Analytic
Monte Carlo

Figure 2. (Left) Same as the left panel of Figure 1 except that the droplet fallout times are indicated by black circles. (Right) Frequency

distributions of the droplet residence time from the Monte Carlo model (for 300,000 droplets) and from the analytic solution (54) for the

same parameters.

4

4.	Fallout	is	stochastic	because	droplets	are	well-mixed	due	to	turbulence.	

Larger	droplets	have	a	greater	probability	of	fallout		per	unit	time	due	to	
their	greater	fall	speeds.

Droplet life cycles in uniform supersaturation: A Monte Carlo model

(Krueger 2020)

Droplet Residence Time Distribution

r2	of	an	individual	droplet	along	its	trajectory,		
supersaturation	at	droplet’s	location

When	the	
supersaturation	is	
fluctuating,	a	droplet	
may	grow	and	
evaporate	many	times	
before	falling	out.	

Droplet	history	from	a	direct	numerical	simulation*

*	Theodore	MacMillan/	David	Richter	(University	of	Notre	Dame)
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Similar	droplet	radius	PDFs	can	be	achieved	by	uniform	or	fluctuating	supersaturation	

Broad DSDs occur in entraining ascending parcels 
and in convection-cloud chambers

• Both have wide DSDs due to variable droplet saturation histories.


• The droplet saturation histories in both exhibit variability in 
supersaturation itself and in droplet growth times.

• Adiabatic parcels and convection-cloud chambers have similar scalings:


• Supersaturation forcing: Vertical velocity ( ) corresponds to . 


• Mean radius: Height above cloud base ( ) corresponds to .


• Supersaturation and radius both decrease as  increases in both.


• LWC depends only on  in a parcel, but on  and  in chambers.


• Entraining parcels and convection-cloud chambers both have wide DSDs due 
to variable droplet saturation histories.


• Wide DSDs are more favorable for collision-coalescence growth.
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Overall summary
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