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Abstract

It is natural to inquire how clouds in a laboratory convection cloud chamber (“clouds in a
box”) are related to clouds in the atmosphere (“clouds in the sky”). In what follows, we
describe the basic scalings that govern how cloud droplets grow in an adiabatic ascending

parcel and in a convection cloud chamber.
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Clouds in the atmosphere are most often a result of adiabatic cooling of ascending air. A
convection-cloud chamber produces a cloud by mixing warm saturated air with cool
saturated air. Mixing is due to convection and turbulence.

In a convection-cloud chamber, such as the Pi Chamber at MTU, aerosols are continuously
injected. The aerosols grow into cloud droplets which eventually fall out by sedimentation.

Because the droplet fall speeds are small compared to the turbulent flow speeds, the droplets

mostly "go with the flow”. As a droplet grows its fall speed increases with the square of the
droplet radius (Stokes' drag law). Consequently, the droplet is increasingly likely to fall out as

it grows.

The rate of aerosol injection is eventually balanced by the rate of droplet fallout. In addition,
the loss of liquid water by fallout is balanced by condensation, and the condensation is
balanced by evaporation from the walls. The result is a thermodynamic state and droplet size

distribution in equilibrium.
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DNS data from Theodore MacMillan and David Richter

Droplet Growth in an Adiabatic Ascending Parcel

« Mean supersaturation, §, and droplet growth time, 7, combine to produce the radius, r(7),
of an individual droplet:

dr?

— = 2515 (integrate over time) ——

dt

r2(7t) = rX(0) + 251J s dt

T

0

 |n an ascending parcel, s ~ w/(N7), where N is droplet number concentration (Korelev &
Mazin 2003).

At height z above cloud base, 7 = z/w, so

e 1r%(z) ~ 57 ~ z/(NV),

e 1(2) ~7/INsoLWC ~ Nr’ ~ z.

Droplet Growth in a Convection Cloud Chamber

* Mean supersaturation, §, and droplet growth time, 7, combine to produce the radius, r(7),
of an individual droplet.

ascending
adiabatic parcel

convection-cloud
chamber

Supersaturation Equation
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where 7. 1s the phase relaxation time. It 1s given by
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Properties measured at a fixed height above cloud base in an ascending parcel
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correspond to properties measured at a specific A7 in a convection-cloud chamber.

Liquid Water Content
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Properties measured at a fixed height above cloud base in an ascending parcel
correspond to properties measured at a specific AT in a convection-cloud chamber.

Ascending parcel versus convection-cloud chamber

» Supersaturation forcing: Vertical velocity (w) corresponds to AT.

 Droplet growth time: Decrease with increasing w corresponds to
decrease with increasing AT.

* Mean radius: Height above cloud base (Az) corresponds to AT.

» Liquid water content: Az corresponds to AT.

boundary layer cloud base
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Dependencies on droplet number concentration

 Supersaturation forcing: Both decrease.

* Droplet growth time: None for parcel; increases with /N in chamber.

e Mean radius: Both decrease.

« Liquid water content: None for parcel; increases with /NV in chamber.
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Droplet life cycles in uniform supersaturation: A Monte Carlo model

1. Droplets are injected at a constant rate.

2. Droplets grow due to uniform supersaturation: dr?/dt = As

3. Due to turbulence, droplet locations are random, so fall out is stochastic.
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Droplet life cycles in uniform supersaturation: A Monte Carlo model

4. Fallout is stochastic because droplets are well-mixed due to turbulence.

Larger droplets have a greater probability of fallout per unit time due to
their greater fall speeds.

Droplet Residence Time Distribution
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Similar droplet radius PDFs can be achieved by uniform or fluctuating supersaturation
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Broad DSDs occur in entraining ascending parcels
and In convection-cloud chambers

 Both have wide DSDs due to variable droplet saturation histories.

* The droplet saturation histories in both exhibit variability In
supersaturation itself and in droplet growth times.

Overall summary

* Adiabatic parcels and convection-cloud chambers have similar scalings:
« Supersaturation forcing: Vertical velocity (w) corresponds to AT.
« Mean radius: Height above cloud base (Az) corresponds to AT.
» Supersaturation and radius both decrease as /V increases in both.

e [WC depends only on Az in a parcel, but on A7 and N in chambers.

 Entraining parcels and convection-cloud chambers both have wide DSDs due
to variable droplet saturation histories.

 Wide DSDs are more favorable for collision-coalescence growth.
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