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Summary
• A machine learning retrieval of droplet effective radius 

(𝑟!) is trained using 3D radiative transfer simulations and 
applied to Aqua-MODIS data over the ocean with the 
MEASURES low-cloud mesoscale morphology classifier 
(Yuan et al., 2020). CloudSat-CPR is used to identify 
precipitation.

• Biases in MODIS bispectral retrievals of 𝑟! vary with 
cloud fraction and mesoscale morphology reaching up 
+70%.

• The covariance between droplet number concentration 
(𝑁") and cloud fraction is revealed to be small.

• The covariance between 𝑁" and precipitation frequency 
at the mesoscale is revealed to be strong.

References
Loveridge & Di Girolamo (2024). https://doi.org/10.1029/2023JD040189
Shen et al. (2022). https://doi.org/10.1029/2021MS002631
Fu et al. (2022). https://doi.org/10.5194/acp-22-8259-2022 
Yuan et al. (2020). https://doi.org/10.5194/amt-13-6989-2020
Grosvenor et al. (2018). https://doi.org/10.1029/2017RG000593
Miles et al. (2000). https://doi.org/10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2

Background
• Operational remote sensing retrievals of cloud optical 

depth and droplet effective radius assume that clouds 
form homogeneous, horizontally infinite slabs.

• This assumption causes systematic errors in remote 
sensing retrievals that vary with the heterogeneity of the 
cloud field and solar-viewing geometry and range from 
-15% to +40% even after subsampling following 
Grosvenor et al., (2018).
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• We train a neural network to predict cloud-top 𝑟! using 
features from MODIS L2 data: (𝜏#, 𝐻$, 𝑟!,&.(, 𝑟!,).&, 𝑟!,*.+)

• We apply 3D radiative transfer simulations to 840 
stochastically generated cloud fields that assume quasi-
adiabatic cloud microphysics to generate training data 
(Loveridge & Di Girolamo, 2024).

• Apply retrieval to MODIS data:
1.  25° < Solar Zenith Angle < 35°
2.  Viewing Zenith Angle < 30°
3.  𝜏! > 2
4.  Oceanic, single-layer, non-precipitating liquid clouds.
5.  All MODIS 𝑟" retrievals are valid.

• Biases against out-of-sample LES cloud fields from Shen 
et al., (2022) are eliminated by using the Machine Learning 
(ML) retrieval.

• Biases against in-situ measurements of shallow 
cumulus from CAMP2Ex RF 17 (Fu et al., 2022) are 
reduced by 60%.
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