Summary

- A machine learning retrieval of droplet effective radius (r_e) is trained using 3D radiative transfer simulations and applied to Aqua-MODIS data over the ocean with the MEASURES low-cloud mesoscale morphology classifier (Yuan et al., 2020). CloudSat-CPR is used to identify precipitation.
- Biases in MODIS bispectral retrievals of r_e vary with cloud fraction and mesoscale morphology reaching up +70%.
- The covariance between droplet number concentration (N_d) and cloud fraction is revealed to be small.
- The covariance between N_d and precipitation frequency at the mesoscale is revealed to be strong.

Background

- Operational remote sensing retrievals of cloud optical depth and droplet effective radius assume that clouds form homogeneous, horizontally infinite slabs.
- This assumption causes systematic errors in remote sensing retrievals that vary with the heterogeneity of the cloud field and solar-viewing geometry and range from -15% to +40% even after subsampling following Grosvenor et al., (2018).

Acknowledgements

We gratefully acknowledge funding from NASA through the FINESST (80NSSC20K1633), ACCDAM (80NSSC21K1449) and remote sensing theory (80NSSC20K1719) programs. We thank all of the members of the CAMP²Ex team for their hard work collecting data, and the MODIS, CloudSat and CALIPSO teams for distributing their data products.

References

Loveridge & Di Girolamo (2024). https://doi.org/10.1029/2023JD040189 Shen et al. (2022). https://doi.org/10.1029/2021MS002631 Fu et al. (2022). https://doi.org/10.5194/acp-22-8259-2022 Yuan et al. (2020). https://doi.org/10.5194/amt-13-6989-2020 Grosvenor et al. (2018). https://doi.org/10.1029/2017RG000593 Miles et al. (2000). https://doi.org/10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2

Apply retrieval to MODIS data: 25° < Solar Zenith Angle < 35° 2. Viewing Zenith Angle < 30° 3. $\tau_c > 2$ 4. Oceanic, single-layer, non-precipitating liquid clouds. 5. All MODIS r_{ρ} retrievals are valid.

Relationships between cloud morphology and cloud microphysics derived from satellite remote sensing are biased by neglect of 3D radiative transfer

Jesse Loveridge¹, Christine Chiu¹, Larry Di Girolamo², Dongwei Fu³

¹Department of Atmospheric Sciences, Colorado State University, USA ²Department of Climate, Meteorology and Atmospheric Sciences, University of Illinois Urbana-Champaign, USA. ³Space Science and Engineering Center, University of Wisconsin-Madison, USA.

Jesse.Loveridge@colostate.edu

stochastically generated cloud fields that assume quasiadiabatic cloud microphysics to generate training data (Loveridge & Di Girolamo, 2024).

Microphysical Differences Between Low-cloud Morphologies (*mm*) Radiu Φ Effective oplet \square

Validation of machine-learning retrieval of r_e

