Cloud Macro- and Micro-physical Response to Idealized Wildfire Aerosol Forcing

Salil Mahajan¹, Pratapaditya Ghosh², Hamish Gordon², Hyun Kang¹, Wei Zhang¹, Naser Mahfouz³ and Sussanah Burrows³ ¹Oak Ridge National Laboratory, ²Carnegie Mellon University, ³Pacific Northwest National Laboratory

1. Motivation

Study the subtropical low cloud response and its radiative forcing to idealized wildfire aerosol forcing and the model sensitivity to:

- Model resolution а.
- Atmosphere-ocean coupling b.
- Local vs. global wildfire forcing

2. Model and Simulations

Model: US Department of Energy's Energy Exascale Earth System Model (E3SMv2):

3. E3SMv2.NARRM Response

Fig. 1: Difference between **10XBB** and **Control** simulation **NARRM** prescribed SST simulation.

4. E3SMv2.LR Response

E3SMv2.LR Simulated Response to Idealized Wildfire Forcing

6. Microphysical Response

Fig. 5: Difference in cloud microphysical properties between **10XBB** and **Control LR** prescribed SST simulation.

7. Moisture Transport

E3SMv2.LR Simulated Response to Idealized Wildfire Forcing

a. Low resolution configuration (**LR**, **100** km) **b.** North American Regionally Refined Model (NARRM) configuration (25km over NA, 100km global)

Prescribed sea-surface temperature (SST) LR and NARRM Simulations:

- **Control:** 10–yr run with climatology (2005**a**. 14) aerosol and SST forcing (F2010 compset)
- **10XBB:** same as Control, but forced with b. climatological biomass burning aerosol mass and number scaled by a factor of 10 globally.

Fully Coupled Atmosphere-Ocean LR simulations:

Control: 10-year with climatological aerosol **a**. forcing

Fig. 2: Difference between **10XBB** and **Control LR** prescribed SST simulation.

5. E3SMv2.LR Coupled Model Response

Coupled E3SMv2.LR Simulated Response to Idealized Wildfire Forcing Net Shortwave Flux Low Cloud Fraction Aerosol Optical Depth at Model Top

8. Regional Forcing Response

Fig. 7: Difference in cloud fraction and its microphysical properties in **10xBB-Local** and **Control LR**. Also shown is the difference in clouds between strong and weak California fire years in MODIS data.

9. Summary and Discussion

10XBB: 10 1-year run ensemble with each b. member initialized from control run model state on Jan 1 of each year and forced with BB aerosols scaled by a factor of 10 globally

Regionally forced prescribed SST LR simulations:

- **Control:** 10-yr run with climatological **a**. aerosol forcing
- **10xBB-Local:** 10-yr run with BB aerosols b. scaled by a factor of 10 only over North America

Fig. 3: Difference between **10XBB** coupled model 10 member 1yr simulation ensemble and **Control** run.

E3SMv2 Simulated Temperature Response to Idealized Wildfire Forcing

Fig. 4: Difference in surface temperature between **10xBB** and **Control** for different configurations

- 10x increase in global BB aerosols results in significant increase in cloud off US west coast.
- Increase in resolution results in a stronger cloud and radiative response
- Atmosphere ocean coupling amplifies response due to low-cloud SST feedback.
- CDNC and effective radius both increase, likely \bullet due to increased availability of moisture.
- Cloud response is weak in NA-only forcing with an increase in CDNC and a reduction in effective radius suggesting a strong role for larger scale dynamics in global forcing runs.

Acknowledgements: DOE's E3SM project, Air Force/ORNL Research Collaboration