

Disentangling model structural and parametric causes of uncertainty Leighton Regayre^{1,2}, Kunal Ghosh², Léa Prevost², Jill S. Johnson³, Jeremy Oakley³ and Ken Carslaw²

UNIVERSITY OF LEEDS

1: UK Met Office Hadley Centre, 2: University of Leeds, Institute for Climate and Atmospheric Science (ICAS), UK 3: University of Sheffield, School of Mathematics and Statistics, UK

1. Our approach to constraining aerosol-cloud interaction forcing (ΔF_{aci})

4. Effects of constraint on remaining forcing uncertainty

A perturbed parameter ensemble (221 members) and Bayesian emulation (1 million model variants) allow us to 1) quantify model parametric uncertainty, 2) challenge model variants with satellite data, 3) identify structural model inadequacies, and 4) characterize process-based limits to ΔF_{aci} constraint

2. Satellite-derived observational constraints

More than 450 satellite-based observations in 5 regions used to challenge 1M model variants: Transects from St. to Cu. regions Monthly and annual mean,

- and seasonal amplitude of state variables
- Hemispheric difference in

Region	Latitude range	Longitude range
North Atlantic	34.4° to 54.4° N	329.1° to 347.8° E
North Pacific	14.4° to 48.1° N	197.8° to 231.6° E
South Atlantic	30.6° to 10.6° S	347.8° to 2.8° E
South Pacific	30.6° to 15.6° S	254.1° to 284.1° E
Southern Ocean	30.6° to 50.6° S	0° to 360° E

 H_d : Hemispheric N_d contrast **T:** Sc. to Cu. transects (e.g., dN_d/dLWP) F_{sw}: SW flux **F**_c: cloud fraction N_d: Droplet number **r**_e: Effective radius τ_c : Optical depth LWP: Liquid water path

5. Mapping the causes of remaining uncertainty

Uncertainty is reduced almost everywhere, with the greatest proportional reduction in N. Hemisphere marine regions. Yet, remaining uncertainty is widespread.

The spatial footprint of causes of remaining ΔF_{aci} uncertainty is unique for all 37 model parameters – potential for further constraint partially limited by equifinality

cloud drop concentrations (H_d)

Regayre et al. 2023

3. Exposing the problem of inconsistent constraint effects

Tight constraint to observed N_d (green) is consistent with observed F_{SW} in all months Constraint to LWP (pink) is inconsistent - model F_{SW} errors increase after LWP constraint

-

The tightest ΔF_{aci} constraint ('optimal') needs only 13 observation types, associated with internally consistent model variables

Adding further observations demands compromise

Clusters of model behaviour defined according to combined parametric causes of *remaining* ΔF_{aci} uncertainty after constraint. Useful to group observations for additional ΔF_{aci} constraint (as opposed to using regional means)

that reduces the impact of constraint on parameter combinations and weakens ΔF_{aci} constraint

More observations could be used for constraint if we had a model free of structural errors

6. Key results

Constraint is stronger when we account for model structural inconsistencies. We know which parameters cause the remaining ΔF_{aci} uncertainty **Additional constraint could be achieved through:**

- model developments that target structural inconsistencies
- Use of observations within clusters (targeting parameter combinations)
 - **Process-based observational constraints (St. to Cu. transitions)**