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Why are Cloud Water Adjustments Cloud Water Adjustments at P .o
Important? Low and High N

The change in short-wave cloud albedo A due to a change in the
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The depicts the increase in A due to more cloud on the steady-state distribution of L. While L = =
droplets scattering radiation more efficiently at higher N (the varies, the steady-state m, for low and high
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water adjustments by dln(L) / dln(N) = m, where L is the In Panel (d), the impact of the parameter == ¢, = 60800 m“ kg'?s”
vertically integrated cloud water content. An m > 0 is usually Moy is assessed. The m, for high N
associated with precipitation suppression due to smaller cloud changes as prescribed, but also the m,, for
droplets (the Albrecht effect), while m < 0 is considered a result low N adapts in a systematic manner. What
of increased entrainment that evaporates the cloud more readily is the relation between the m,, for low and
at higher N (sedimentation- or evaporation-entrainment high N?
feedbacks). The steady-state solution of (1) relates
The magnitude and sign of m are uncertain: Estimates vary these slopes as
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To predict the development of L, we consider losses by for smaller N (see Yaosheng Chen’s poster). 0.0 10 50 30 4.0
precipitation and the charge/discharge to the thermodynamic l0g;o(N) (cm™)
carrying capacity of the system as
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where 7, is a precipitation timescale, 7y a thermodynamic Sl — m., =0.24 / i 3.0 - , B
timescale, and the thermodynamic carrying capacity is 1]— m.,=-064

N perturbations exist at various temporal and
spatial scales, covering highly localized aerosol
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o,h = =0 N, ‘ emissions such as ship tracks to phenomena

which is determined by a prescribed m, ,. Following Baker and g g on regional scales like volcanic eruptions. At
Charlson (1990), changes in N are described by 5 5 the same time, these perturbations can exhibit
dN L L = correlations with L. How do perturbations
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o o 1_3 We extended (1) and (2) to stochastic
depicting precipitation scavenging, , and differential equations to assess the effect of

potential sources (e.g., sea spray).

The steady-state values of m show a good agreement with
the large-eddy simulation (LES) results of Glassmeier et al.
(2021).

perturbations. Perturbations are applied by
prescribing a timescale (Tprt), relative

magnitude (aprt), and a correlation
between L and N (mprt).
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