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1. Summary

+  We want NEMO to be able to use more generic vertical coordinates that do
not represent the bathymetry as a series of steps

+ We focus on two methods, djc and ff, that conserve momentum by
integrating line integrals around the cell faces

+ We use cubic interpolating polynomials. For very rough bathymetry the
interpolation is constrained to avoid overshoots

* The two methods give quite similar results that are better than second order
methods for the standard SEAMOUNT test-case

» The final velocities are almost the same whether cells are intialised as point
values or grid-cell mean values

2. Motivation

» This is a step towards more generic vertical coordinates for NEMO

»  With stepped bathymetry there are well known issues with flow over
sills (Bruciaferri et al 2024), unphysical side-walls (Adcroft & Marshall
1998) and the representation of bottom torques (Styles et al 2021)

» Shchepetkin & McWilliams (2003) showed that higher-order schemes
with limiters can perform well
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* Classic HPG test case of Beckmann and Haidvogel (1993)

» Isolated 2D Gaussian seamountin an E-W periodic channel (above left)
* Ocean initialised at rest with exponentially decaying density p(z)

» Velocities should be identically zero

» Details follow the two configurations of Ezer et al. (2002) closely

» No thermal diffusivity, EOS80; Centred advection; A,, = 500 m?/s

» Seamounts have different steepness (figures above on centre & right)

* Maximum of slope parameter r,,,, = AH/2H is 0.36 for “steep” and

3. Methods

The net horizontal pressure
force on a velocity cell can be
calculated as the sum of the
forces on the faces (ff) of the
cell (figure on left - Lin 1997)

L - P
This is a good “conservative” framework;

action equals reaction; there is a good °
analogue of the bottom pressure torque

The horizontal force on the upper face
segment Ax is - pAz °
The total horizontal force on the cell is
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The density Jacobian (djc) method of
Shchepetkin & McWilliams (2003)
involves a similar line integral of the

density
c = f 0z d .
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Second order methods to interpolate p, p
and calculate the line integrals are not
accurate enough. Need to use higher-
order methods (figure on right )

With very rough bathymetry it is
necessary to constrain the interpolations
to avoid overshoots

The ffg_ccs and djc schemes use
constrained cubic splines; ffq_cub uses a
simple unconstrained cubic interpolation
The density, rhd, in NEMO has the main
effect of compressibility removed (Roquet
et al 2015)

* The prj scheme interpolates the front &
back pressures to the same height and
differences them. Action # reaction and
there are problems near the bottom

We have also tried a pre-conditioner that
vertically interpolates then subtracts the
density profile at the deepest point from
all other points in the stencil. This scheme
also does not guarantee action = re-action

5. Main results .
Integrations for 180 days
sco is the standard NEMO scheme
ffl is forces on faces with simple linear
interpolation (Lin 1997) .
djc and ffq_cub give the smallest
maximum currents after spin-up for a
“moderate” slope
They are stable even though they do not
conserve an analogue of energy

For the “steep” case the ffq_ccs and djc
schemes give the smallest maximum
currents. The ffg_cub scheme is no better
than ffl

Even for the moderate configuration the prj
scheme quickly generates much larger
currents (not shown). The pre-conditioner
gives small initial currents but large currents
emerge (not shown)
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6. Effects of cell mean initialisation and advection schemes -
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« Ourdijc, ffq_ccs and ffqg_cub schemes treat the cell e
densities as point values. We could treat them as cell mean oz ’ et s 7. Questions for further work
values, but this would roughen the density field and the Taze:  #F — rgy ey
limiters would need revision E o0 - dic_ave — fig_ccs_pnt *  Why does cell mean initialisation have little impact?
« Marsaleix et al 2009 note that this issue affects schemes 3 L i fisios e « Can a competitive forces on faces scheme be derived that treats
differently éj"-“’ tracers as cell mean values (cf Engwirda et al 2017)?

* The upper figure to the right shows results for the steep
configuration initialising cells using point values (pnt; solid

. . 0 1000
lines) and cell average values (ave; dotted lines)
» The initial velocity errors are larger for ave (as expected) 0.10-  — djc cen2
. . P — djc_fet2
but the velocity errors after spin-up are very similar o dic s

* Mellor et al (1998) argue that after spin-up the velocity "é
errors depend on the curl of the error in the horizontal =
pressure forces H
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* The lower figure to the right shows that the tracer scheme
has a significant impact on the velocity errors after spin-up

* The fct schemes reduce the velocity errors; the fct4 scheme
reduces them more than the fct2 scheme! %
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» How good are results for hybrid (e.g., vanishing quasi-sigma or

multi-envelope) coordinates?

What smoothing of envelope bathymetries (with multi-enveloping

or Brinkman penalisation methods) gives most reliable results?

« Can the subtraction of a reference profile be stabilised (e.g. by
ensuring that action equals reaction — it seems not)?

« What are the computational costs? How can they be kept low?
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A first version of these results was published as IMMERSE
Deliverable 3.3: Accurate calculation of pressure forces Dec 2021.
This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
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