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3. Methods1. Summary 
• We want NEMO to be able to use more generic vertical coordinates that do 

not represent the bathymetry as a series of steps 
• We focus on two methods, djc and ff, that conserve momentum by 

integrating line integrals around the cell faces
• We use cubic interpolating polynomials. For very rough bathymetry the 

interpolation is constrained to avoid overshoots
• The two methods give quite similar results that are better than second order 

methods for the standard SEAMOUNT test-case
• The final velocities are almost the same whether cells are intialised as point 

values or grid-cell mean values

5. Main results

4. Standard test bed 

• With very rough bathymetry it is 
necessary to constrain the interpolations 
to avoid overshoots

• The ffq_ccs and djc schemes use 
constrained cubic splines; ffq_cub uses a 
simple unconstrained cubic interpolation

• The density, rhd, in NEMO has the main 
effect of compressibility removed (Roquet 
et al 2015) 

• The prj scheme interpolates the front & 
back pressures to the same height and 
differences them. Action ≠ reaction and 
there are problems near the bottom

• We have also tried a pre-conditioner that 
vertically interpolates then subtracts the 
density profile at the deepest point from 
all other points in the stencil. This scheme 
also does not guarantee action = re-action  

8. References

• The net horizontal pressure 
force on a velocity cell can be 
calculated as the sum of the 
forces on the faces (ff) of the 
cell (figure on left - Lin 1997)
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• Integrations for 180 days
• sco is the standard NEMO scheme
• ffl is forces on faces with simple linear 

interpolation (Lin 1997)
• djc and ffq_cub give the smallest 

maximum currents after spin-up for a 
“moderate” slope

• They are stable even though they do not 
conserve an analogue of energy  

• For the “steep” case the ffq_ccs and djc
schemes give the smallest maximum 
currents. The ffq_cub scheme is no better 
than ffl

• Even for the moderate configuration the prj
scheme quickly generates much larger 
currents (not shown). The pre-conditioner 
gives small initial currents but large currents 
emerge (not shown)
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6. Effects of cell mean initialisation and advection schemes  

7. Questions for further work

• This is a good “conservative” framework; 
action equals reaction; there is a good 
analogue of the bottom pressure torque

• The horizontal force on the upper face 
segment ∆𝑥 is - p∆𝑧 

• The total horizontal force on the cell is 
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• The density Jacobian (djc) method of 
Shchepetkin & McWilliams (2003) 
involves a similar line integral of the 
density 
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• Second order methods to interpolate 𝜌, 𝑝
and calculate the line integrals  are not 
accurate enough. Need to use higher-
order methods (figure on right ) 

• This is a step towards more generic vertical coordinates for NEMO
• With stepped bathymetry there are well known issues with flow over 

sills (Bruciaferri et al 2024), unphysical side-walls (Adcroft & Marshall 
1998) and the representation of bottom torques (Styles et al 2021) 

• Shchepetkin & McWilliams (2003) showed that higher-order schemes 
with limiters can perform well

• Classic HPG test case of Beckmann and Haidvogel (1993)
• Isolated 2D Gaussian seamount in an E-W periodic channel (above left)
• Ocean initialised at rest with exponentially decaying density 𝜌(𝑧)
• Velocities should be identically zero
• Details follow the two configurations of Ezer et al. (2002) closely
• No thermal diffusivity, EOS80; Centred advection; AM = 500 m2/s
• Seamounts have different steepness (figures above on centre & right)
• Maximum of slope parameter 𝑟௫ = ∆𝐻/2𝐻 is 0.36 for “steep” and

0.07 for “moderate” configurations
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• Why does cell mean initialisation have little impact? 
• Can a competitive forces on faces scheme be derived that treats 

tracers as cell mean values (cf Engwirda et al 2017)?
• How good are results for hybrid (e.g., vanishing quasi-sigma or 

multi-envelope) coordinates?
• What smoothing of envelope bathymetries (with multi-enveloping 

or Brinkman penalisation methods) gives most reliable results? 
• Can the subtraction of a reference profile be stabilised (e.g.  by 

ensuring that action equals reaction – it seems not)? 
• What are the computational costs? How can they be kept low?

A first version of these results was published as IMMERSE 
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• Our djc, ffq_ccs and ffq_cub schemes treat the cell 
densities as point values. We could treat them as cell mean 
values, but this would roughen the density field and the 
limiters would need revision

• Marsaleix et al 2009 note that this issue affects schemes 
differently

• The upper figure to the right shows results for the steep 
configuration initialising cells using point values (pnt; solid 
lines) and cell average values (ave; dotted lines)

• The initial velocity errors are larger for ave (as expected) 
but the velocity errors after spin-up are very similar

• Mellor et al (1998) argue that after spin-up the velocity 
errors depend on the curl of the error in the horizontal 
pressure forces 

• The lower figure to the right shows that the tracer scheme 
has a significant impact on the velocity errors after spin-up

• The fct schemes reduce the velocity errors; the fct4 scheme 
reduces them more than the fct2 scheme!
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