

PML Plymouth Marine Laboratory

The habitat and biogeochemical properties of low-oxygen-adapted tropical ocean phytoplankton.

¹ Isabelle Cox, ¹ Robert Brewin, ^{2,3} Giorgio Dall'Olmo, ¹ Katy Sheen, ³ Shubha Sathyendranath, ⁴ Rafael Rasse, ⁵ Osvaldo Ulloa

¹University of Exeter, UK; ²National Institute of Oceanography and Applied Geophysics – OGS, Italy; ³Plymouth Marine Laboratory, UK; ⁴Centre national de la recherche scientifique, France; ⁵University of Concepción, Chile

Introduction

In regions where the upper bound of the oxygen minimum zone nears the euphotic zone, a unique community of phytoplankton can appear. Found at depths of ~100m, this community is past the optical bounds of satellite remote sensing, and thus, monitoring this community is complex.

Methods

Data were collected from a biogeochemical Argo float in the Eastern Tropical North Pacific. Using the data, we expanded a two-community conceptual model by Brewin et al (2022) by adding a third community, allowing for the

Figure 1: Example fit of rescaled fields in absolute units for chlorophyll.

Scan for Cox et al (2023) paper

others. 2022. A conceptual approach to partitioning a vertical profile of phytoplankton biomass into contributions from two communities. J. Geophys. Res. Oceans. 127: e2021./LC018195. doi:10.1029/2021JC018195

Reference

Brewin, R. J. W., and

Community Dynamics

C₁ dominate the mixed layer and have a higher concentration during the winter months (Nov–Apr). Whereas, C₂ has a strong presence over the annual cycle, with a depth of peak biomass at around 60 m. C₃, however, resides at a depth of around 100 m (below the 5 μ mol kg-1 DO boundary), at times reaching depths of 200 m. (d) Community 1

Figure 2: Vertical partitioning of; (a) community 1 (C₁), (b) community 2 (C₂), (c) community 3 (C₃), using the chlorophyll model (mg m-3).

Contributions to Community Stock

There is variation between each community's contribution to integrated stocks. C₂ (44%) and C₃ (41%) have higher average contributions to integrated Chl a than C₁. However, C₂ and C₃ contribute less (~ 30%) than C₁ (~ 40%) to integrated particulate backscattering, phytoplankton's depth-dependent variations in the carbon:Chl a ratio.

backscattering for C1, C2, C3 and the background backscattering coefficient (b_{pp}^k), (c) fractions of integrated particulate backscattering and (d) fractions of integrated chlorophyll-a for for C1, C2, C3 without b_{pp}^k).

Results

Environmental Conditions

At a depth of ~ 106 m, C₃ thrives in an extreme environment, characterised by low irradiance levels of ~ 0.02 molequanta m-2 d-1 (~ 0.04% of surface irradiance), low temperatures at 14.6°C (median), oxygen depleted waters at 96.63 µmol kg-1 (median), high salinity of 34.74 PSU (median), and resultant higher density at 34.74 PSU (median). Despite C₃ residing in the densest waters, C₂ has the greatest stability due to C₃ being below the thermocline and oxycline.

Figure 6: Environmental conditions for C₁, C₂ and C₃. (a) temperature (°C), (b) salinity (PSU), (c) density (kg m⁻³), (d) Brunt-Välsälä (s⁻²), (e) DO (μmol kg⁻¹), and (f) PAR (mole quanta m⁻² d⁻¹).

Summary

Brewin et al's (2022) two-community model has been extended, adding the third community (C₃). Applying the model to data collected by a BGC-Argo float, C₃ is explored. C₃ has a similar chl-specific particulate backscattering to C₂, lower than that of C₁. Both C₂ and C₃ significantly contribute (~41%) to integrated stocks of Chl *a*, and integrated particulate backscattering (~30). Although having a similar contribution as C₂ (found at depths of 60 m), C₃ are found at lower depths (~100 m) – characterised by a low temperatures, high density, low light, low oxygen, and high saline habitat – and have a lower biomass yet have a broader peak. In addition, this unique community appears to thrive in an environment characterised by lower temperatures, higher density, lower light, low oxygen, and higher saline habitat, than C₂ and C₃.