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» Connections between upwelling and surface processes are well

understood, less so for the deep sea (although there are correlations). SST (°Q) > 3 long-term ecological
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(1) Upwelling Is connected to surface (2) Upwelling drives deep-sea
carbon export and abyssal POC flux ecosystem temporal variability

= Coastal upwelling and water mass history explain surface export = Coastal upwelling drives ecological variability down to the 4000m seafloor
= Export is likely a combination of local (phyto) and upstream (zoo) signals = Upwelling variability is damped on time scales linked to animal lifespans
= Both ocean color and GA (zoo) products are linked to 4000-m carbon flux = The connection appears to be fast but the signal persists
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