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» Gelatinous zooplankton (GZ) and fishes have fast-sinking detritus =
(700-1500+ m/d), which is ~10x faster than bulk oceanic detritus.
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% Fig. 5. Ocean biogeochemical

impacts of fast-sinking detritus.
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case, and observations from
World Ocean Atlas (WOA)
observations. Total (d) hypoxic

 Especially unknown are the impacts of fast-sinking detritus on Yy Miﬁ \ 7 3 f_ .
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ocean oxygen, both in the oxygen minimum zones (OMZs) and at E— * * * * * = control (center to

suggests that the observations are able to accommodate increased bottom

05 1.0 15 0.0 0.5 1.0 0.5 1.0 0.5 1.0 1.5

i | 3 (02 <= 60 mmol m-3) and (e)
the seafloor. Expt v. Ctrl (factor diff), Fish Qﬁfhe?;'nfes 7 mee 3n et 0a | T 0sT, e 36T me 0 suboxic (02 <= 5 mmol m-3)
100 Prass Y30 between the PN < N ocean volume (in km3) by
* We use a coupled physical-biogeochemical model with explicit 0 control and o e A . simulation year, shown for the
. g . . . r s . . . 1 , \ experiments_ GZ-COBALT control and all three
GZ (specifically, pelagic tunicates) and implicit fish to investigate | @ 100 m: fast-sinking detritus cases. Note
cye . . . . | (b) 1000 m:; that simulations were initialized
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River Input Deposition and Air-Sea Exchanges (Table 1) * Incorporating fast-sinking detritus resulted in a global decrease in NPP and ]
iver Inputs . . . S
4 arDL surface export flux. This effect was strongest in the subtropical gyres, where
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COBALT | Higher trophic levels nutrients were already limiting (Fig. 2).
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(fig. from e sinking detritus improved the model-data fit at sites near the s. The fit at other - - -
7020, e R sites were degraded — but this is consistent with modifying a component of a tuned deeper, but the total hypoxic and suboxic volume were still lower than the
| Carbon siicon > flvesopou del (Laufk gtt t al. 2017) ying P Control. This is due to the interactive effect of fast-sinking detritus on
Phosphorus OCaIcite,Aragonite SET;ruiirglnlzatlon mo e au O er e a‘ " - OX en and remineralization rates
| * Increased supply of POC to seafloor Y9 '
- We used a modified version of the GFDL COBALT model with two T - = increased benthic oxygen utilization rates * This implies at a biological mechanism for improving models’
explicit size classes of pelagic tunicates (GZ-COBALT; Luo et al. 2022) £ o o (OUR) (Fig. 4). representation of OMZ size and change with climate change — a key
and implicit higher trophic level predators (fish) (Fig. 1). o o] o] o) model bias.
S Ha G BT o » But, compared to the Jargensen et al. (2022)
- Fast-sinking detritus were separated from bulk B T T Ny data product, simulated OUR even with - Sedimentary oxygen utilization may be an !ndepe.ndent constraint on fast
detritus, and sank at 1000 m d-' compared to ) o] fast-sinking detritus is significantly lower. POC fluxes. Recent seafloor OUR observations (Fig. 4) suggest at
the bulk rate (100 m d-7). l \l l W Sl il significantly more benthic oxygen consumption than our model suggests.
* Fast-sinking detritus includea: o " | - This is a puzzling discrepancy — possibly due to biases in both
Fish: all detritus (represents fecal pellets only) ol o observations and coastal productivity in models — but nonetheless
GZ: all detritus from jelly-falls, and 75% of the

— — MX VERTEX Il VERTEX Il Arabian | . . .
fecal pellets. e 5 T : fluxes from fast-sinking detritus.
* 4 experiments were run with 2001 (
1) no fast-sinking detritus (Control) 100 m d- o3 1 V/ S (™ || N 3| N Referen
2) fast-sinking GZ detritus only, e ST et AW ererences
3) faSt‘S|n ’(|ng f|Sh detrItUS Only, v %2000— 400 1@ zooo: 2000 || * Dinauer, A., Laufkétter, C., Doney, S. C., & Joos, F. (2022). What controls the large-scale efficiency of carbon transfer through the
. . . . . ) & 30001 600 1 3000 | 30001 ocean’s mesopelagic zone? Insights from a new, mechanistic model (MSPACMAM). Global Biogeochemical Cycles, 36(10).
4) fast-sinking fish and GZ detritus combined. 1000 m d- a000 a00- s oo | hitps://doi.org/10.1029/ 2021GB007131
5000(_)10 05 10 15 o 10 15 20 1 2 o 3 1 2 + Jorgensen, B. B., Wenzhdfer, F.,, Egger, M., & Glud, R. N. (2022). Sediment oxygen consumption: Role in the global marine carbon
] _ _ PERU cycle. Earth- Science Reviews, 228, 103987. https://doi.org/10.1016/j.earscirev.2022.103987
* S|mu Iat|OnS were run W|th MOM6, S|82 y and GZ'CO BALT at 05 ’ — Control Fig. 3. Normalized POC export . Laufkc:jtter, C., John, J. G Stock, C.. A., & Dunne, J. P. (2017). Temperature gnd oxygen dependence of the remineralization of
. . . . £ 5007 — :yr;:cgtles only  flux at 22 sites, comparing the 7 . organic matter. Global Biogeochemical Cycles, 31(7), 1038-1050. https://doi.org/10.1002/2017GB005643
deg ree hOI’IZOﬂ’[BJ reSOIUtK)n fOI’ 300 yearS W|th 5 60-yeal’ repeatlng §.1000—0 L C'Zmbi?]gd simulations with observations of * Luo, J. Y., Stock, C. A., Henschke, N., Dunne, J. P, & O’Brien, T. D. (2022). Global ecological and biogeochemical impacts of Publ |Shed
. 1500 - e oObservations ~ POC flux profiles from either free- Fig. 4. Benthic oxygen utilization. Comparisons between the Jorgensen pelagic tunicates. Progress in Oceanography, 205, 102822. https://doi.org/10.1016/j.pocean.2022.102822
COREI I_IAF CyCIGS, representlng 1 948_2008 The IaSt 20 years Of the ——7 drifting sediment traps or with et al. (2022) observational product (top) and simulated oxygen « Stock, C. A., Dunne, J. P, Fan, S., Ginoux, P, John, J., Krasting, J. P, et al. (2020). Ocean biogeochemistry in GFDL’s Earth man USC” p‘t
. Normalized POC Flux Marine Snow Catchers (Dinauer et i - _ system model 4.1 and its response to increasing atmospheric CO2. Journal of Advances in Modeling Earth Systems, 12(10).
5th cycle was averaged for analysis. al., 2022) ( consumption at the ocean bottom in the GZ-COBALT control and three https://doi.org/10.1029/2019MS002043
g : experimental cases (tunicate-only, fish only, and tunicates and fish

combined).


https://doi.org/10.1029/2019MS002043

