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Atmospheric forcing for dense shelf water cascading in the 
Northwestern Mediterranean
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1. Introduction: The Gulf of Lion (GoL) in the Northwestern Mediterranean is known for its dense shelf water cascading (DSWC), influenced by winter oceanic conditions 
and river discharge. Our study utilizes reanalysis data to examine past cascading events and their correlation with winter air-sea fluxes. These fluxes increase shelf density, driving 
rapid sinking to the deep sea (Fig 1) at speeds exceeding 1m/s, facilitating substantial particle transport.

1000 m  deep

A reanalysis is a dataset blending historical 
observations and computer models to reconstruct 
past weather and climate.

In Fig 2, we see the sea bottom potential 
temperature (θ) of the Mediterranean Sea Physics 
Reanalysis1, hereafter MED. 
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Fig 2. DSWC simulated by the reanalysis MED 

Fig 3. Observational methods of DSWC

Fig 1: DSWC formation at GoL
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Past studies6,7 noted higher
heat loss due to the East
Atlantic (EA) pattern. We found
a strong correlation (0.57)
between B and the EA index
from ERA5 sea level pressure 
(SLP). 

To validate MED results on DSWC, we compare them
with observations at the bottom of Cap de Creus
Canyon (CCC) (Fig 2, 3 and 4ab).
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Fig 4. a,b: CCC at 1000m (daily averaged for MED, 20-minute observed by a mooring). c: MED daily density 
values along CCC. d: winter-averaged atmospheric forcing.

Validated with the observations
Previous non-observed events have
been found→Complete overview of the
climate variability of DSWC since 1987

EA+

In 1999, DSWC was reported 
at the Lacaze-Duthiers 
Canyon2, next to CCC. 

The density of MED (Fig 4c) is
influenced by the ERA55

reanalysis. Fig 4.d. shows the
buoyancy flux (B) between the
surface at the GoL shelf (Fig 2)
of MED and the air surface of
ERA5. 

B < 0 →   ↑ Shelf density

Before 2005, no DSWC 
observations were made at 
CCC and thus MED cannot 
strictly be validated in that 
canyon at that period.

Atmospheric forcing 
impact (ERA5)

Stronger ERA5 forcing 
densifies MED shelf water

Denser shelf water 
(MED)

Dense MED shelf water 
triggers cascading events

According to MED, since 
1987, DSWC occurred in 
1987, 1999, 2000, 2005, 2006, 
2012, 2013 and 2018 (Fig 4). 

Reanalysis Insights 

Buoyancy flux

CCC

https://doi.org/10.1016/S0924-7963(02)00055-6
https://doi.org/10.1038/nature05271
https://doi.org/10.1029/2007GL032825
https://doi.org/10.1029/2009JC005749
https://doi.org/10.1029/2010JC006685

	Diapositiva 1

