Variability of Oxygen in Denmark Strait Overflow Water (DSOW) as Revealed by Moored Oxygen Sensors in the Irminger Basin

Hiroki Nagao1, Isabela Le Bras2, Una Miller3, Jaime Palter3, Amy Bower2, Heather Furey2, Greg Koman2,4, Dariia Atamanchuk5, Kristen Fogaren6, David Nicholson2, Hilary Palevsky6, Meg Yoder6

1. Background and Objectives

- Denmark Strait Overflow Water (DSOW) is formed from deep convection in the Nordic Seas and is the densest component of the Deep Western Boundary Current (DWBC).
- In the Irminger Basin, DSOW properties change due to entrainment, which plays a critical role in the density structure of AMOC and oxygenation of the North Atlantic.
- Variability in biogeochemical properties of DSOW along the DWBC of the Irminger Basin and its relationship with entrainment remains an open question.

This study documents the variability in the oxygen content of DSOW in the DWBC near Cape Farewell and relates these observations to the fractions of water masses that the overflow plume entrains.

2. Data

- Moored oxygen sensors offshore of Cape Farewell, Greenland reveal for the first time that O2 concentration and saturation of DSOW exhibits variability over seasonal timescales.
- Water-mass decomposition analysis suggests that the observed seasonality in the oxygen content of DSOW is linked to the entrainment of LSW and NEADW.
- We will apply Price and Baringer (1994)’s numerical model for entrainment mixing to test the extent to which variability in source overflow properties and entrainment processes influence the variability in DSOW properties observed in Cape Farewell.

3. Oxygen Cycle in DSOW from OSNAP M

- Dissolved oxygen concentration and saturation of DSOW increase over winter-spring (February to July) and decrease over summer-fall (August to January).

4. Water-Mass Composition of DSOW

The following source waters were defined: (1) Source Denmark Strait Overflow Water (sDSOW), (2) Northeast Atlantic Deep Water (NEADW), (3) Labrador Sea Water (LSW), and (4) Arctic Water (ArW). The water-mass decomposition reveals seasonality in % NEADW and % LSW.

5. Summary and Outlook

- Moored oxygen sensors offshore of Cape Farewell, Greenland reveal for the first time that O2 concentration and saturation of DSOW exhibits variability over seasonal timescales.
- Water-mass decomposition analysis suggests that the observed seasonality in the oxygen content of DSOW is linked to the entrainment of LSW and NEADW.
- We will apply Price and Baringer (1994)’s numerical model for entrainment mixing to test the extent to which variability in source overflow properties and entrainment processes influence the variability in DSOW properties observed in Cape Farewell.