

Accurate calculation of horizontal pressure forces on cells defined by steeply sloping coordinates

Mike Bell, Diego Bruciaferri (Met Office)

Summary

- We want NEMO to be able to use more generic vertical coordinates that do not represent the bathymetry as a series of steps
- We focus on two methods, djc and ff, that conserve momentum by integrating line integrals around the cell faces
- We use cubic interpolating polynomials. For very rough bathymetry the interpolation is constrained to avoid overshoots
- The two methods give quite similar results that are better than second order methods for the standard SEAMOUNT test-case
- The final velocities are almost the same whether cells are intialised as point values or grid-cell mean values

2. Motivation

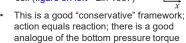
- This is a step towards more generic vertical coordinates for NEMO
- With stepped bathymetry there are well known issues with flow over sills (Bruciaferri et al 2024), unphysical side-walls (Adcroft & Marshall 1998) and the representation of bottom torques (Styles et al 2021)
- Shchepetkin & McWilliams (2003) showed that higher-order schemes with limiters can perform well

4. Standard test bed "moderate"

- Classic HPG test case of Beckmann and Haidvogel (1993)
- Isolated 2D Gaussian seamount in an E-W periodic channel (above left)
- Ocean initialised at rest with exponentially decaying density $\rho(z)$
- Velocities should be identically zero
- Details follow the two configurations of Ezer et al. (2002) closely
- No thermal diffusivity, EOS80; Centred advection; $A_M = 500 \text{ m}^2/\text{s}$
- Seamounts have different steepness (figures above on centre & right)
- Maximum of slope parameter $r_{max} = \Delta H/2H$ is 0.36 for "steep" and 0.07 for "moderate" configurations

3. Methods

The net horizontal pressure force on a velocity cell can be calculated as the sum of the forces on the faces (ff) of the cell (figure on left - Lin 1997)



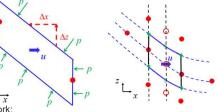
- The horizontal force on the upper face segment Δx is - $p\Delta z$
- The total horizontal force on the cell is

$$F_{x} = -\oint_{C} \left(p \frac{\partial z}{\partial s} \right) ds$$

The density Jacobian (djc) method of Shchepetkin & McWilliams (2003) involves a similar line integral of the

$$G_x = -\oint_C \left(\rho \frac{\partial z}{\partial s}\right) ds$$

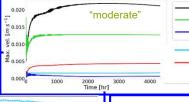
Second order methods to interpolate ρ , pand calculate the line integrals are not accurate enough. Need to use higherorder methods (figure on right)

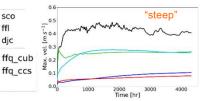


- With very rough bathymetry it is necessary to constrain the interpolations to avoid overshoots
- The ffq_ccs and djc schemes use constrained cubic splines; ffq_cub uses a simple unconstrained cubic interpolation
- The density, rhd, in NEMO has the main effect of compressibility removed (Roquet et al 2015)
- The **prj** scheme interpolates the front & back pressures to the same height and differences them. Action ≠ reaction and there are problems near the bottom
- We have also tried a pre-conditioner that vertically interpolates then subtracts the density profile at the deepest point from all other points in the stencil. This scheme also does not guarantee action = re-action

5. Main results

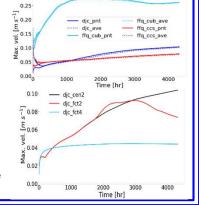
- Integrations for 180 days
- sco is the standard NEMO scheme
- ffl is forces on faces with simple linear interpolation (Lin 1997)
- djc and ffq_cub give the smallest maximum currents after spin-up for a "moderate" slope
- They are stable even though they do not conserve an analogue of energy
- For the "steep" case the **ffq_ccs** and **djc** schemes give the smallest maximum currents. The ffq_cub scheme is no better
- Even for the moderate configuration the prj scheme quickly generates much larger currents (not shown). The pre-conditioner gives small initial currents but large currents emerge (not shown)





6. Effects of cell mean initialisation and advection schemes

- Our djc, ffq_ccs and ffq_cub schemes treat the cell densities as point values. We could treat them as cell mean values, but this would roughen the density field and the limiters would need revision
- Marsaleix et al 2009 note that this issue affects schemes
- The upper figure to the right shows results for the steep configuration initialising cells using point values (pnt; solid lines) and cell average values (ave; dotted lines)
- The initial velocity errors are larger for ave (as expected) but the velocity errors after spin-up are very similar
- Mellor et al (1998) argue that after spin-up the velocity errors depend on the curl of the error in the horizontal pressure forces
- The lower figure to the right shows that the tracer scheme has a significant impact on the velocity errors after spin-up
- The fct schemes reduce the velocity errors; the fct4 scheme reduces them more than the fct2 scheme!



Questions for further work

SCO

djc

- ffl

- Why does cell mean initialisation have little impact?
- Can a competitive forces on faces scheme be derived that treats tracers as cell mean values (cf Engwirda et al 2017)?
- How good are results for hybrid (e.g., vanishing quasi-sigma or multi-envelope) coordinates?
- What smoothing of envelope bathymetries (with multi-enveloping or Brinkman penalisation methods) gives most reliable results?
- Can the subtraction of a reference profile be stabilised (e.g. by ensuring that action equals reaction - it seems not)?
- What are the computational costs? How can they be kept low?

A first version of these results was published as IMMERSE Deliverable 3.3: Accurate calculation of pressure forces Dec 2021. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 821926

8. References

Adcroft A, Marshall D. 1998. How slippery are piecewise-constant coastlines in numerical ocean models? Tellus A 50: 95-108.

Beckmann A, Haidvogel DB. 1993. Numerical simulation of flow around a tall isolated seamount. Part I: Problem formulation and accuracy. *J. Phys. Oceanogr.* 23: 1736–1753.
Bruciaferri, D., Guiavarc'h, C., Hewitt, H. T., Harle, J., Almansi, M., Mathiot, P., & Colombo, P. (2024).

Localized general vertical coordinates for quasi-Eulerian ocean models: The Nordic overflows testcase. Journal of Advances in Modeling Earth Systems, 16, e2023MS003893. https://doi.org/10.1029/2023MS003893

Engwirda D, Kelley M, Marshall J. 2017. High-order accurate finite-volume formulations for the pressure gradient force in layered ocean models. Ocean Modelling 116: 1–15.

Ezer T, Arango H, Shchepetkin AF 2002 Developments in terrain-following ocean models: intercomparisons of numerical aspects. Ocean Modelling 4, 249–267

Lin SJ. 1997. A finite-volume integration method for computing pressure gradient force in general vertical coordinates. Quart. J. Roy. Meteor. Soc. 123: 1749–1762.

Marsaleix P, Auclair F, Estournel C. 2009. Low-order pressure gradient schemes in sigma coordinate models: The seamount test revisited. Ocean Modelling 30: 169–177, doi:10.1016/j.ocemod.2009.06.011 Mellor GL, Oey LY, Ezer T. 1998. Sigma coordinate pressure gradient errors and the seamount problem. J. Atmos. Oceanic Tech. 15: 1122-1131.

Roquet F, Madec G, McDougall TJ, Barker PM 2015 Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard. Ocean Modelling, 90,29–43.

Shchepetkin AF, McWilliams JC. 2003. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res. 108, C3: 30390, doi:10.1029/2001JC001047 Styles AF, Bell MJ, Marshall DP, Storkey D. 2021. Spurious forces can dominate the vorticity budget of ocean gyres on the C-grid. JAMES, 14, e2021MS002884, doi:10.1029/2021MS002884