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1 Abstract

Quantifying how much mixing there is in ocean model solutions is essential for model evaluation and

comparison because it is directly related to tracer distribution and water mass transformation, yet also

affects the energetics through dissipation and potential energy production. A new tracer variance di-

agnostic (Banerjee et al., 2024) is used that distinguishes between transport and destruction in each

direction thus allowing estimation, from the destruction term, of the numerical diffusivity in all direc-

tions. The method applies to any finite-volume discretization of the advection-diffusion equation and to

most vertical coordinates since it accounts for the evolution of grid-cell thickness.

An idealized, southern-ocean-like eddy-resolving channel, similar to Hill et al. (2012), is used to eval-

uate the new method in comparison with others. Various advection schemes are considered, including

those previously reported but also new high-order, weighted essentially non-oscillatory (WENO) ad-

vection schemes. By exploiting this method’s specific capability, some averaged diagnostics including

vertical profiles of variance destruction and effective diffusivity are presented. Methods to derive a

diapycnal effective diffusivity are discussed and results are compared with other estimations.

3 Method

In each grid cell, the tracer variance (σ2):

Rate of change(σ2) = Transp(σ2) + Prod(σ2)

The goal is to relate both terms to the model tracer equation, i.e., tracer

advective flux assuming finite volume discretization.

Notations:

For any variable ”q” and for any of the 3 dimensions x, y, z or time t, we define

δ(), () and (̃)
2

as:

for i = x, y, z, t : δiq = q(i +∆i/2)− q(i−∆i/2) ;

qi = [q(i +∆i/2) + q(i−∆i/2)]/2 ; q̃2i = q(i +∆i/2)× q(i−∆i/2)

The 3 components of the velocity vector are written (vx, vy, vz) ; and for any

grid-cell mesh (∆x,∆y,∆z) the corresponding transport through each face of

the grid-cell is Vx = vx∆y∆z ; Vy = vy∆x∆z ; Vz = vz∆x∆y .

Using finite volume discretization, grid-cell volume “h” (= ∆x∆y∆z)

evolution relates to the continuity equation:

δth = −∆t
∑

i=x,y,z

δiVi (1)

And tracer concentration “c” evolves according to:

δt(hc) = −∆t
∑

i=x,y,z

δiFi(Vi, c) (2)

where Fi(Vi, c) is the advective flux of tracer concentration c in the direction i.

Variance budget:

The changes in tracer variance (here after take c2 as σ2) is:

δt(hc2) = −c̃2tδth + 2ctδt(hc) (3)

Direct Method Banerjee et al. (2024), no residual :

δt(hc2) = − ∆t
∑

i=x,y,z

δiTi + ∆t
∑

i=x,y,z

Pi
i

(4)

transport flux : Ti = 2citFi − Vi (c̃2t)
i

(5)

production term : Pi = 2Fi δ
ict − Vi δ

i(c̃2t) (6)

Effective diffusivity:

Following Morales Maqueda and Holloway (2006), the effective diffusivity [κσ] in

each direction (i = x, y, z) is evaluated from the variance production term (eq.6)

as:

κσ
i =

−Pi

2(δict)2
1

∆di
(7)

with geometric factor ∆dx = (∆y∆z)/∆x and similarly for ∆dy and ∆dz.

Direction splitting

Fractional time-stepping is often used (e.g. in MITgcm) to solve multi-dimensional

advection equation. The advance in time from t0 to t0 + ∆t is splitted in three

fractional steps: t0 → t1 → t2 → t3 = t0 + ∆t with intermediate volume ht1, ht2

and tracer concentration ct1, ct2:

δtx(hc) = (hc)t1 − (hc)t0 = −∆t δxFx(Vx, c
t0) δtxh = ht1

− ht0 = −∆t δxVx

δty(hc) = (hc)t2 − (hc)t1 = −∆t δyFy(Vy, c
t1) with : δtyh = ht2

− ht1 = −∆t δyVy

δtz(hc) = (hc)t3 − (hc)t2 = −∆t δzFz(Vz, c
t2) δtzh = ht3

− ht2 = −∆t δzVz

To apply the previous method of tracer variance diagnostics to fractional time-

stepping is straightforward. For instance Tx and Px are evaluated (5 & 6) with

the corresponding intermediate step tracer concentration: ct = (ct0 + ct1)/2 and

c̃2t = ct0 × ct1 ; and similarly Ty,Py using ct1, ct2 and Tz,Pz using ct2, ct3.
And similarly, the numerical diffusivity is:

κσ
x =

−Px

2(δxct0)2
1

∆dx
; κσ

y =
−Py

2(δyct1)2
1

∆dy
; κσ

z =
−Pz

2(δzct2)2
1

∆dz
(8)2 Objective and Motivation

Surface Vorticity field in the GIN

seas and Denmark strait from

global simulation at ≃ 1.km res.

(results from D. Menemenlis etal, 2014, using MITgcm on NASA-AMES com-

puter; Figure from Ryan Abernathey)

Objective:

1. Provide a closed tracer variance bud-

get that distinguishes between re-

distribution (transport) and produc-

tion/destruction.

2. Fluid advection only contributes to

variance transport. Diffusion con-

tributes to both. =⇒ Estimate nu-

merical diffusion (anywhere + in 3

directions) from the variance pro-

duction.

Applications:

• analyze high resolution simulation

(complex & very turbulent flow)

• compare with observations (tracer

release)

• water-mass transformation

• evaluate numerical scheme (e.g., de-

pendence on grid Reynolds number,

Ilicak et al. (2011))

4 Eddying Channel application

For comparison, use the same set-up as Hill et al. (2012): Zonally re-entrant,

flat bottom channel, 3.km deep, on Cartesian grid (β-plane) at 5.km resolu-

tion, forced by zonal wind, surface heat flux and temperature relaxation near

Northern boundary. Use z∗ coordinate (Adcroft and Campin, 2004), keep KPP

mixing scheme but without non-local term, and use higher vertical resolution

(90 Lev., max(∆z) = 42) than reference 2012 set-up. Also run the same set-

up (but without KPP) with Oceananigans (Ramadhan et al., 2020) using some

high-order WENO schemes (Silvestri et al., 2024).

Perform variance budget analysis over the last 5 years of a 110.yr spin-up with the 3rd order, direct space-time advection scheme

with Sweby limiter (Hill et al., 2012)[A6]: budget closes perfectly after including forcing contribution ; variance destruction and

effective diffusivity (over 5.yr and over Lx) are shown below for each direction.
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Findings: diffusivity are mostly positive in x and y directions but some negative destruction along z (specially in the surface

mixed layer); smooth enough without extra averaging; and consistent with Hill et al. (2012) with caution (horizontal diffusivity

is diapycnal).

5 Comparison

Comparison of diagnosed numerical diffusivity in the eddying channel using MITgcm or Oceananigans with

various numerical schemes.

Oceananigans / MITgcm with and without KPP
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Low diffusivity schemes (Hill et al., 2012)
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Reynolds number effect
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Using same diffusive 3rdO upwind

scheme: good agreement between the 2

models. Shear-instability near the bot-

tom could explain larger diffusivity near

the bottom (reduced with KPP).

Numerical diffusivity strongly depends

on advection scheme. Findings here con-

firm Hill et al. (2012) ranking with very

low diffusion from the Second-Order

Moment (SOM) scheme.

Using high order WENO for both Mo-

mentum and Tracer (Silvestri et al.,

2024), here W-M+T curve, enhances fine

structures in the flow field. The expected

(Ilicak et al., 2011) increase of tracer

numerical diffusivity here (vs prescribed

horizontal hi-harmnic viscosity, W-O9)

remains relatively small.

Apart from the problem with very coarse

vertical resolution near the bottom, the

diagnosed numerical diffusivity is not

sensitive to vertical resolution as seen

here with the 3rdO scheme.

Vertical resolution (with 3
rdO scheme)
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6 Conclusion

A new tracer variance diagnostic (Banerjee et al., 2024) distinguishes between transport and destruction in each direction

thus allowing to quantify, from the destruction term, the numerical diffusivity in all directions. The method has been

implemented in two ocean models and applied to an idealized eddying-channel simulation.

About the method:

• The diagnosed numerical diffusivity match previous estimations (Hill et al., 2012) obtained with different methods but

with same model, in the same set-up and same numerical schemes. It confirms the large spreading from numerical

schemes.

• Maps of numerical diffusivity in each direction are available.

• Despite different time-stepping, a good agreement is found between the two models when using the same (simple) 3rd

Order Upwind avection scheme.

And beyond:

• useful for understanding the model solution, e.g., the enhanced diffusivity near the bottom likely related to shear-

instability.

• modest effect (larger diffusivity expected) from improving flow-field fine structures when switching from constant bi-

harmonic viscosity to high-order WENO scheme for momentum.

• ready to be used in realistic global-ocean simulation.

References

Adcroft, A., Campin, J.-M., 2004. Re-scaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean-Modelling, 7, 269-284, 2004.

Banerjee, T., Danilov, S., Klingbeil, K., Campin, J.-M., Discrete variance decay analysis of spurious mixing. Ocean-Modelling, submitted, 2024.

Hill, C., D. Ferreira, J.-M. Campin, J. Marshall, R. Abernathey, N. Barrier, Controlling spurious diapycnal mixing in eddy-resolving height-coordinate ocean models – Insights from virtual deliberate tracer release experiments Ocean-Modelling, 45-46, 14-26, 2012.

Ilicak, M., A. Adcroft, S. M. Griffies, and R. Hallberg, 2012: Spurious dianeutral mixing and the role of momentum closure. Ocean Modelling, 37-58, 14-26, 2012.

Holmes, R. M., Zika, J. D., Griffies, S. M., Hogg, A. M., Kiss, A. E., and England, M. H., 2021: The geography of numerical mixing in a suite of global ocean models. JAMES, 13, doi: 10.1029/2020MS002333

Klingbeil, K., Mohammadi-Aragh, M., Grawe, U., Burchard, H., 2014. Quantification of spurious dissipation and mixing - discrete variance decay in a finite-volume framework. Ocean-Modelling, 81, 49-64, 2014.

Silvestri, Simone, G. Wagner, J.-M. Campin, N. Constantinou, C. Hill, A. Souza and R. Ferrari, 2024, A new WENO-based momentum advection scheme for simulations of ocean mesoscale turbulence. JAMES, 16, doi: 10.1029/2023MS004130


