

Dynamical Decomposition of Multiscale Oceanic Motions

Zhiyu Liu¹, Chuanyin Wang^{1,2}, and Hongyang Lin¹

¹Xiamen University, China, ²Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China

INTRODUCTION

- A long-standing challenge in dynamical oceanography is to distinguish various dynamical regimes of multiscale oceanic motions
- Conventional approaches of the multi-regime disentanglement focus on time-scale or space-scale decompositions
- This study has established two dynamical approaches to disentangle vortical (PV-bearing) and wavy (PV-less) motions

DYNAMICAL DECOMPOSITION #1

decomposing physical variables into six regimes

Dynamical properties

- Large-scale currents and barotropic tides have the largest horizontal scales but contrasting frequencies
- Low-mode IGWs are constrained by dispersion relations
- Mesoscale flows are of relatively low frequency and with horizontal scales above the first baroclinic deformation radius
- The intrinsic frequency of high-mode IGWs (submesoscale flows) is
 above (well below) the inertial frequency

DYNAMICAL DECOMPOSITION #2

0m Wavy Motions (10⁻⁵ m/s²) 2012-01-01 00:00:00

0m Wavy Variables 2012-01-01 00:00:00

0m Vortical Motions (10⁻⁵ m/s²) 2012-01-01 00:00:00

COMPARISON WITH LAGRANGIAN FILTERING

this study

Lagrangian filtering

REFERENCE FOR DETAILS (& CODES)

- Wang C., Liu Z.*, and Lin H. (2023), On dynamical decomposition of multiscale oceanic motions, Journal of Advances in Modeling Earth Systems, 15(3), e2022MS003556.
- Wang C., Liu Z.*, and Lin H. (2023), A simple approach for disentangling vortical and wavy motions of oceanic flows, *Journal of Physical Oceanography*, 53(5), 1237–1249.

Corresponding E-mail: zyliu@xmu.edu.cn