Arctic Climate Feedback Response to Local Sea-Ice Concentration and Remote Sea Surface Temperature
Changes in PAMIP Simulations
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increased greenhouse gases.
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Model Simulation Full Name Description historical (black lines) and future (red lines) SST (dashed lines) and o 1s Present-Day SST, Future ASIC
) ) SIC (solid lines) changes. *Feedbacks estimated with radiative kernels. ~Ehatad L L L i
1.1 pdSST-pdSIC* |Present day sea surface temperature |Year 2000 global SST and polar SIC; GHG fixed at year 2000 concentrations. a - -
Present-day sea-ice concentration *Control run; experiments 1.2-1.6 compared to experiment 1.1. VII_ Summary % 1oF R
: & 0.05F —
1.3 piSST-pdSIC Preindustrial sea surface temperature |Historical (1.3) and future (1.4) global SST with polar SIC fixed at year 2000/, ® Warmer global SSTs enhance atmospheric energy e . -
e [ ° . — | /
Present-day sea-ice concentration conditions; GHG fixed at year 2000 concentrations. convergence into the Arctic and trigger Arctic water vapor g 000 g
feedback. 5 _ -
1.4 futSST-pdSIC Future sea surface temperature . . . = 00 ]
: : Assesses role of background warming without sea-ice feedback. " Reduced Arctic SIC and increased oceanic heat release > B
Present-day sea-ice concentration . 2 —0.10 )
enhances cold-season positive lapse rate and cloud feedbacks e ]
1.5 pdSST-piArcSIC |Present-day sea surface temperature |Historical (1.5) and future (1.6) Arctic SIC with global SST fixed at year 2000||  and reduces atmospheric energy convergence into the Arctic. = —0.1555 6530 -' 030" 65 90
Preindustrial sea-ice concentration  |conditions; GHG fixed at year 2000 concentrations. » Lapse rate feedback strongest in areas with large oceanic | Latitude (°)_
1.6 pdSST- Present-day sea surface temperature heat release and surface warming in response to Arctic SIC Fig. >. October_-March Arctic — northwara
: : Assesses role of Arctic sea-ice feedback without background warming energy transport in response to future (TOP)
futArcSIC Future sea ice concentration ' loss. SST and (BOTTOM) Arctic SIC changes.
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