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Method
We aim to isolate and quantify the impact of a weakened AMOC on Arctic 
amplification using the fully coupled CCSM4 model under anthropogenic 
warming by the end of the 21st century. 
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Motivation & Background
Arctic amplification, notable for its intensified surface warming compared 
to the global average, has been a focal point in climate studies. Multiple 
factors, such as surface albedo feedback, Planck feedback, lapse-rate 
feedback, and atmosphere/ocean energy transports, contribute to this 
phenomenon. Of particular interest is the Atlantic Meridional Overturning 
Circulation (AMOC) and its intricate link to Arctic warming. Observations 
indicate a slowdown in the AMOC, while enhanced northern high-latitude  
ocean heat transport (OHT) into the Arctic has been noted. Understanding 
the AMOC's role in Arctic amplification remains pivotal.
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RCP8.5 & freshwater removed from north of 50°N in the North 
Atlantic and the Labrador and Greenland, Iceland, and Norwegian Seas. 
(Liu et al., 2020; scan the QR code for more details on experiments)
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Summary
Comparing CCSM4 free- and fixed-AMOC simulations under RCP8.5, 
we find weakened AMOC reduces Arctic surface warming. By the end 
of 21st century, pronounced cooling (~5°C) occurs in the Atlantic sector, 
linked to reduced Arctic sea ice loss and surface albedo feedback 
(~43%). AMOC-driven ocean heat uptake and temperature feedback also 
contribute to surface cooling. 
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Figure 1: Changes in Annual mean AMOC 
strength and Arctic surface temperature 
anomalies with respect to the average over 
1901-1980. 

Figure 2: Projected changes in Arctic surface temperature and sea 
ice concentration, and the AMOC impact. (a-c) Annual mean surface 
temperature anomalies (relative to the average over 1961-1980) 
between 2081 and 2100. (d-f) Same as (a-c),  but for sea ice 
concentration.

Figure 3: Contributions of radiative feedback, atmospheric energy 
transport (AET), and ocean heat uptake (OHU) to Arctic 
amplification, and the AMOC impact. Partial surface temperature 
changes for the Arctic (60°N-90°N) compared to the tropics (30°S-
30°N) during 2081-2100 compared to 1961-1980

Figure 4: AMOC impacts on partial temperature 
contributions from radiative feedback. (a-f) Annual and 
ensemble mean partial temperature contribution differences 
between the free- and fixed-AMOC simulations (free 
minus fixed, color shading in K)

Figure 5: AMOC impacts on annual mean ocean 
temperature tendencies and atmospheric energy 
transport convergence. (a-c) Annual and ensemble mean 
ocean temperature tendency differences (free minus fixed) 
during 2081-2100 (d-f) Annual and ensemble mean 
differences for (d) TOA and (e) surface energy fluxes, and 
(f) whole-column atmospheric energy transport 
convergence (d minus e)

Warming trend between 1981-2100
• free-AMOC: 0.74°C decade-1
• fixed-AMOC: 0.86°C decade-1

Pronounced warming divergence 
post-2030s warming peaks in last 
two decades of the century (Fig 1).

Free vs. fixed-AMOC simulations 
comparison reveals ~2°C Arctic 
cooling during 2081-2100 and 
notably ~5°C cooling in North 
Atlantic near Greenland (Fig 2).

Weakened AMOC slows Arctic 
warming by 1.41°C, lowers Arctic 
amplification factor by 0.36, notably 
in DJF and MAM.

Partial Temperature Contribution 
(2081-2100 compared to 1961-1980)
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Weakened AMOC could 
lessen the Arctic warming 
during 2081-2100 via 

Surface albedo feedback: 
~43% (-0.60 K)
Ocean heat uptake:
 ~33% (-0.47 K)
Planck & lapse-rate feedback: 
~43% (-0.61 K)
Water vapor feedback: 
~12% (-0.17 K)

And slightly enhance the 
Arctic warming via

Cloud feedback:
~4% (0.06 K); 
which is mostly contributed 
from the shortwave cloud 
feedback (13%; 0.18 K)
Atmospheric energy transport:
~23% (0.34 K)

Ocean heat budget
AMOC slowdown
à OHT divergence 
à Whole-depth water cooling 

(Fig 5a) 
à Promote ocean heat uptake 

(Fig 5b) 
à Diminished heat storage (Fig 

5c) and lessened sea ice loss 
(Fig 2f)

à Outweighs convergence of 
atmospheric energy transport 
(Fig 3c & Fig 5f)

yuchi.lee@email.ucr.edu


