The Role of a Weakened AMOC in the Future Arctic Amplification . .
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Motivation & Background

Arctic amplification, notable for its intensified surface warming compared
to the global average, has been a focal point in climate studies. Multiple
factors, such as surface albedo feedback, Planck feedback, lapse-rate
feedback, and atmosphere/ocean energy transports, contribute to this
phenomenon. Of particular interest 1s the Atlantic Meridional Overturning
Circulation (AMOC) and its intricate link to Arctic warming. Observations
indicate a slowdown 1n the AMOC, while enhanced northern high-latitude
ocean heat transport (OHT) into the Arctic has been noted. Understanding
the AMOC's role 1n Arctic amplification remains pivotal.

Method

We aim to i1solate and quantify the impact of a weakened AMOC on Arctic
amplification using the fully coupled CCSM4 model under anthropogenic
warming by the end of the 215 century.
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Figure 2: Projected changes in Arctic surface temperature and sea
ice concentration, and the AMOC impact. (a-c) Annual mean surface
temperature anomalies (relative to the average over 1961-1980)

between 2081 and 2100. (d-f) Same as (a-c), but for sea ice

concentration.
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Figure 3: Contributions of radiative feedback, atmospheric energy
transport (AET), and ocean heat uptake (OHU) to Arctic
amplification, and the AMOC impact. Partial surface temperature
changes for the Arctic (60°N-90°N) compared to the tropics (30°S-

30°N) during 2081-2100 compared to 1961-1980
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Figure 4: AMOC impacts on partial temperature
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Ocean heat budget

AMOC slowdown

- OHT divergence

- Whole-depth water cooling
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Summary

Comparing CCSM4 free- and fixed-AMOC simulations under RCPS8.5,
we find weakened AMOC reduces Arctic surface warming. By the end
of 215t century, pronounced cooling (~5 C) occurs in the Atlantic sector,
linked to reduced Arctic sea 1ce loss and surface albedo feedback
(~43%). AMOC-driven ocean heat uptake and temperature feedback also
contribute to surface cooling.
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