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1. Motivation

- Summer atmospheric circulation over Greenland has been

CESM27
characterized by a more negative North Atlantic Oscillation (NAO) simulated B
and an increase in Greenland blocking episodes™. surface W
lemperature LW
- These atmospheric conditions have been the primary cause of (top) and soil
accelerating Greenland Ice Sheet (GrlS) surface runoff'24°, WSRO/ S
response (o
- The rapid retreat of spring snow cover extent (SCE) under Arctic prescribed
Amplification is cited as a possible reason for this change in Zero May N g
atmospheric circulation® Fpmerican snow
P & ' cover from May  aocw
through July. 0w

2. Snhow Cover &
Greenland Blocking

Monthly Lag from July

Correlation between measures of July
circulation (ERA5) over Greenland
and antecedent North American SCE
area (Rutgers GSL)®.

- Low spring N. American
SCE is followed by more
frequent Greenland
blocking in July.

3. The Snow
Hydrological Effect

- May SCE is linked to July surface
conditions via soil moisture.

 Dry soils in eastern N. America cause enhanced
surface heating with a warm anomaly that emerges
In June and persists into
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5. Prescribed GCM Experiment
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« N. American snow cover set to zero on May 1st on each of ten
simulated years in CESM2.
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North America, forcing a
stationary Rossby wave
that favors ridging over
Greenland and widespread
melt of the GrlS.

- Modeled response closely resembles historical
results; however stationary wave response
occurs one month earlier in June.

i
CESM2" simulated anomalous 300 hPa
geopotential height (shading) and associated
3D wave activity flux® (vectors)from May

through July in response to prescribed zero
May N. American snow cover.

- Anomalous surface
thermal forcing generates

a stationary Rossby wave
response that favors ridging
over Greenland.
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Top: July 300 hPa geopotential

height” (contours) regressed against
inverted N. American SCE area®.
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\Vertical (shading) and horizontal
= (vectors) components of associated
3D wave activity flux®. Stippling, flux
divergence, hatching, convergence.
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baroclinic origin of stationary wave.
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