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Motivation Key Points

- Fall OLR changes emerge before Spring OLR
changes on average, but internal variability
creates irreducible uncertainty (Fig. 1).
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- Two decades of satellite
observations capture changes in
Arctic outgoing longwave
radiation (OLR) associated with
sea ice loss and surface warming.
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- Larger forced change and smaller internal
variability in the Fall relative to Spring cause
seasonal contrasts in time-to-emergence
(Fig 2). Shortwave absorption during the
melt season controls the size of the
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- Global Climate Model Large
Ensembles allow us to predict
when observed OLR changes A F T T T A 5 O NE.0. Ames
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. . Month STE seasonal contrast (Figs 4-5).
dm{en. by an.thropogemc Figure 1: Monthly and annual time-to-emergence of top-
emissions will emerge from of-atmosphere all-sky Arctic OLR for members of the - Rapid warming in the Arctic is generally
internal climate variability. CESM1 Large Ensemble (CESM1-LE) for time series paired with large internal variability,

beginning in 2001. Error bars span a bootstrapped 95%
confidence interval on estimated time-to-emergence.
The dashed grey line indicates the 22-year CERES
observational record.

preventing Arctic warming from emerging
earlier than the rest of the globe.
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Figure 2: Monthly differences in time-to-emergence (grey) decomposed into Figure 3: Spatial maps of the monthly and annual mean time-to-emergence of
contributions from correlation time (blue), standard deviation (orange), and all-sky OLR. Panels show the CESM1-LE ensemble mean time-to-emergence. The
trend (green). Values are calculated using years 400-2200 of the CESM1 1850 time-to-emergence of the area-weighted Arctic (70°—90°N) average OLR from

pre-industrial control simulation. Fig. 1 is reported in the title of each plot.
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