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W Internal Variability Enhanced Arctic Amplification During 1980-2022
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Abstract Since 1980 the Arctic has warmed four times as quickly as the global mean!?, referred to as Arctic Amplification (AA). While climate models | References

'Rantanen et al., 2022

simulate AA, they struggle to replicate the observed magnitudes. This suggests either a gap in understanding the forced Arctic response, or a significant | 2Chylek et al., 2023
role of internal variability. Utilizing CMIP6 data and machine learning, we quantify internal variability's impact on Arctic and global warming trends>+*.
While observed AA from 1980-2022 is 4.2, after removing internal variability AA 1s reduced to ~3.0° and agrees with climate model estimates. *Sweeney et al., 2023
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Methods Convolutional Neural Networks (CNNs) are used to partition the role

of internal variability over both the Arctic (north of 70°), and globe individually.
CNNs are trained using 43-year trend patterns of Surface Air Temperature (SAT)
and Sea Level Pressure (SLP) from 11 large ensembles spanning 1900-2050.
After training CNN, we apply 1t to observations of SAT and SLP trend patterns to
quantify the role of internal variability for 1980-2022

Arctic Amplification

Results

1. From 1980-2022 internal variability increased Arctic warming by 0.145 K/dec
while decreasing global warming by -0.024 K/dec (not shown).

2. AA 1n observations 1s ~4.2, but after removing internal variability the AA 1s 3.0,
in agreement with models which show a mean value of 2.8.




