Sensitivity of eddy-permitting ocean simulations to the vertical structure of energy backscatter parameterization Email: wenda.zhang@princeton.edu

Wenda Zhang¹, Stephen Griffies^{1,2}, Elizabeth Yankovsky³, Alistair Adcroft¹, Robert Hallberg^{1,2}

¹ Princeton University, Princeton, New Jersey ³Yale University, New Haven, Connecticut

Motivation

- **Eddy-permitting ocean models**, with resolution $0.1^{\circ} 0.5^{\circ}$, often exhibit weaker and more surfaceintensified eddy kinetic energy than higher-resolution models and observations.
- The kinetic energy backscatter parameterization (e.g., Jansen and Held, 2014, Jansen et al., 2019) was introduced to enhance the energy of mesoscale eddies in eddy-permitting models.
- The vertical structure of backscatter remains unconstrained, which can significantly impact largescale dynamics (Yankovsky et al., 2024)

Goal of This Study

Examine the sensitivity of large-scale circulations to the vertical structure of eddy momentum forcing Provide guidance on constraining the vertical structure of backscatter parameterization

Approach

- An idealized configuration of **MOM6**, *Neverworld2*, is used to test the backscatter parameterization Setup: Double-hemisphere domain; isopycnal coordinate with 15 layers; forced by zonally uniform zonal wind stress; no buoyancy forcing; adiabatic and hydrostatic
- Momentum equation in vector invariant form:

- Backscatter counteracts the biharmonic viscosity term by injecting the dissipated energy back to the model at larger scales
- The antiviscosity, v_2 , is formulated following Jansen et al. (2019), $v_2(x, y, z) = -c_0 \sqrt{2\text{MEKE}(x, y, z)} L_{mix}(x, y)$

where c_0 is a constant, L_{mix} is the mixing length

- MEKE equation is solved for either a **2D** field or a **3D** field (Juricke et al., 2019). For the 2D case, v_2 is prescribed with a vertical mode structure
- Different vertical structure of backscatter is tested: (1) 2D MEKE + barotropic (BT) mode
- (2) 2D MEKE + equivalent barotropic (EBT) mode
- (3) 2D MEKE + surface quasigeostrophic (SQG) mode
- (4) 3D MEKE
- The formulation of SQG vertical structure is given by Zhang et al. (2024):

$$\Phi_{sqg}(z,\Delta)\approx e^{2k_g z_s}$$

where $z_s = \int_z^0 \frac{N}{|f|} dz$, and $k_g = \max\left(k_{Rh}, \frac{c}{\Lambda}\right)$, Δ is the grid spacing, k_{Rh} is the inverse of Rhines scale, and c is a tuning parameter

Reference

Jansen, M.F. and Held, I.M., 2014. Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Modelling, 80, pp.36-48. Jansen, M.F., Adcroft, A., Khani, S. and Kong, H., 2019. Toward an energetically consistent, resolution aware parameterization of ocean

mesoscale eddies. Journal of Advances in Modeling Earth Systems, 11(8), pp.2844-2860. Juricke, S., Danilov, S., Kutsenko, A. and Oliver, M., 2019. Ocean kinetic energy backscatter parametrizations on unstructured grids: Impact on mesoscale turbulence in a channel. Ocean Modelling, 138, pp.51-67.

Yankovsky, E., Bachman, S., Smith, K.S. and Zanna, L., 2024. Vertical structure and energetic constraints for a backscatter parameterization of ocean mesoscale eddies. Journal of Advances in Modeling Earth Systems, 16(7), p.e2023MS004093 Zhang, W., Griffies, S.M., Hallberg, R.W., Kuo, Y.H. and Wolfe, C.L., 2024. The role of surface potential vorticity in the vertical structure of

²NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

- large-scale circulation structure

Energy backscatter can shape the vertical structure of resolved eddies, which further modulate the

A more surface-intensified vertical structure like SQG mode leads to better large-scale isopycnal structure by reasonably representing the momentum fluxes of surface-intensified eddies