
Conclusion

Motivation

• Eddy-permitting ocean models, with resolution 0.1∘ − 0.5∘, often exhibit weaker and more surface-
intensified eddy kinetic energy than higher-resolution models and observations.

• The kinetic energy backscatter parameterization (e.g., Jansen and Held, 2014, Jansen et al., 2019) 
was introduced to enhance the energy of mesoscale eddies in eddy-permitting models.

• The vertical structure of backscatter remains unconstrained, which can significantly impact large-
scale dynamics (Yankovsky et al., 2024)

Goal of This Study

• Examine the sensitivity of large-scale circulations to the vertical structure of eddy momentum forcing
• Provide guidance on constraining the vertical structure of backscatter parameterization

• Energy backscatter can shape the vertical structure of resolved eddies, which further modulate the 
large-scale circulation structure

• A more surface-intensified vertical structure like SQG mode leads to better large-scale isopycnal 
structure by reasonably representing the momentum fluxes of surface-intensified eddies
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Approach

• An idealized configuration of MOM6, Neverworld2, is used to test the backscatter parameterization
• Setup: Double-hemisphere domain; isopycnal coordinate with 15 layers; forced by zonally uniform 

zonal wind stress; no buoyancy forcing; adiabatic and hydrostatic

• Momentum equation in vector invariant form:
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• A subgrid EKE (MEKE) equation:
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• Backscatter counteracts the biharmonic viscosity term by injecting the dissipated energy back to the 
model at larger scales

• The antiviscosity, 𝜈&, is formulated following Jansen et al. (2019),
𝜐&(𝑥, 𝑦, 𝑧) = −𝑐2 2MEKE 𝑥, 𝑦, 𝑧 𝐿3)4(𝑥, 𝑦)

where 𝑐2 is a constant, 𝐿3)4 is the mixing length
• MEKE equation is solved for either a 2D field or a 3D field (Juricke et al., 2019). For the 2D case, 𝜐&	

is prescribed with a vertical mode structure

• Different vertical structure of backscatter is tested:
  (1) 2D MEKE + barotropic (BT) mode
  (2) 2D MEKE + equivalent barotropic (EBT) mode
  (3) 2D MEKE + surface quasigeostrophic (SQG) mode
  (4) 3D MEKE
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Figure 1. Vertical structure of the barotropic 
(blue), square of equivalent barotropic 
(orange), and SQG mode (red) at a location in 
the Southern Ocean of the model

Figure 2. Surface kinetic energy snapshot in (a) 1/32∘ simulation (b) 1/4∘ simulation without the backscatter, and (c) 1/4∘ 
simulation with the backscatter using an SQG structure. Black lines are 500-day mean sea surface height contours.

Figure 3.  As  figure 2 but for the 500-day mean barotropic streamfunction of gyres in the North Hemisphere.

• Kinetic energy and gyre transport are improved 
by the backscatter parameterization for all 
vertical structures

• Mean available potential energy (APE) is 
computed as
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where η is the isopycnal interface height and 𝜂!"# 
is the initialized interface height 
• APE measures the baroclinicity of mean flow

• BT and EBT backscatters lead to too weak mean 
APE in the Southern Ocean

• SQG and 3D backscatters improves the mean 
APE that matches the high-resolution 
simulation

Figure 4. Zonally averaged vertical integral of (a) kinetic energy and (b) mean 
available potential energy. Blue, orange, green, red and purple  lines are for the 
1/32∘ simulation, 1/4∘	simulation without backscatter, 1/4∘ simulation with the 
BT, EBT, and SQG backscatters, respectively. Grey dashed line indicates the 
1/4∘	simulation with backscatter informed by 3D MEKE.

Figure 5.  Isopycnal structure in a meridional section of Southern Ocean in (a) 1/32∘ simulation, (b) –(d) 1/4∘ 
simulations with the BT, SQG, and 3D backscatter, respectively. Green and black lines are isopycnals in the 1/32∘ and 
1/4∘ simulations, respectively. Color shading indicates the mean zonal velocity.

Figure 6. Energy tendency due to horizontal viscous stress as a function of horizontal wavenumber 
and depth in Southern Ocean. Red and blue  indicate energy source and sink, respectively. (a)-(c) 
1/4∘ simulation with the BT, SQG, and 3D backscatter, respectively.  Black dashed line indicates the 
wavenumber of 4Δ𝑥 wave. Yellow dashed line indicates the inverse of Rossby deformation radius.

• Biharmonic viscosity dissipates energy at scale smaller than 4Δx (~70 km); backscatter injects energy 
at scales around 200 km

• Forcing is vertically uniform in the BT backscatter case, leading to more barotropic eddies 
• SQG and 3D backscatters enhance surface-intensified eddies at about 200 km

Eddy Rectification Effect
 

• Eddies enhance by backscatter rectifies the large-scale circulations through inverse energy cascade
• Spurious barotropic eddies reduce the baroclinicity of mean flow

KE spectral flux:

Figure 7. As figure 6 but for the kinetic energy spectral flux. Blue and red indicate inverse and forward 
energy cascades, respectively. 

Isopycnal Structure

Energy Contribution by Backscatter

• Backscatter with deep vertical structure (BT and EBT&) leads to flatter isopycnals (i.e., reduced 
baroclinicity) in the upper ocean

• A more surface-intensified vertical structure (SQG and 3D) leads to better isopycnal structure

Energy tendency due to horizontal 
viscous stress in spectral space:  
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• The formulation of SQG vertical structure is given by Zhang 
et al. (2024):

Φ*?@ 𝑧, Δ ≈ 𝑒&.!A"

where 𝑧* = ∫A
2 B
|D|𝑑𝑧, and 𝑘@ = m𝑎𝑥 𝑘E(,

+
∆ , 

∆ is the grid spacing, 𝑘E( is the inverse of Rhines scale, and 𝑐 is 
a tuning parameter
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