Pacific Northwest NATIONAL LABORATORY

Assessing Radiative Feedbacks and their Contribution to the Arctic Amplification Measured by Various Metrics

Yiling Huo¹ (yiling.huo@pnnl.gov), Hailong Wang¹, Jian Lu¹, Qiang Fu², Alexandra K. Jonko³, Younjoo Lee⁴, Weiming Ma¹, Wieslaw Maslowski⁴, Yi Qin¹

¹Pacific Northwest National Laboratory, Richland, WA, USA. ³Los Alamos National Laboratory, Los Alamos, NM, USA

Introduction

- Arctic amplification (AA): a more rapid surface air temperature (SAT) change in the Arctic than the global average.
- Various metrics have been used to quantify AA based on SAT anomalies, trends or variability, and can yield quite different conclusions regarding the AA magnitude & temporal patterns.
- Goals of this study:
 - Examine and compare established AA metrics for their temporal consistency in the region north of 70°N from the mid-20th - the early 21st century using observational and reanalysis data.
 - Quantify contributions of different radiative feedbacks to AA based on short-term climate variability in reanalysis and model data using the Kernel-Gregory approach.

2. AA metrics

Metric	Definition	Reference
A ₁	Difference between Arctic SAT	Francis and
	anomaly and global SAT anomaly	Vavrus (2015)
A ₂	Ratio of the absolute value of Arctic	Johannessen
	SAT linear trend to the absolute	et al. (2016)
	value of global SAT linear trend	
A ₃	Ratio of the Arctic SAT interannual	Kobashi et al.
	variability, measured by standard	(2013)
	deviation of yearly/seasonal	
	anomalies, to the global SAT	
	interannual variability	
A ₄	Coefficient of linear regression	Bekryaev et
	between Arctic and global SAT	al. (2010)
	yearly/seasonal anomalies	
A ₅	Ratio of the Arctic-mean to the	Ono et al.
	global-mean SAT anomalies	(2022)
A_6	Ratio of the Arctic standardized	Przybylak
	SAT anomaly to the global	and
	standardized SAT anomaly	Wyszyński
		(2020)
A ₇	Ratio of the Arctic trends of	Przybylak
	standardized SAT yearly/seasonal	and
	anomaly to the global trends of	Wyszyński
	standardized SAT yearly/seasonal	(2020)
	anomaly	

²University of Washington, Seattle, Washington, USA. ⁴Naval Postgraduate School, Monterey, CA, USA

C -0.17 20% R 0.34 -39%

2 0 Tropical feedback

50°N 60°N 70°N 80°N 90°N

This work was based on research supported by the U.S. DOE, Office of Science, Biological and Environmental Research, Regional and Global Model Analysis program area, as part of the HiLAT-RASM project.

PNNL is operated by Battelle for the U.S. Department of Energy

3. AA quantification using various datasets

• A rapid increase in observed AA from the mid-20th century to the early 21st century in various AA metrics.

ERA5: good agreement with the HadCRUT5 observations; CESM2 LE: underestimate the recent AA increase (likely linked to model bias or deficiency in capturing natural variability appeared in the observations).

Energy balance 5. model (EBM)

- MSE = Cp * SAT + Lv * q (Cp: air specific heat, Lv: latent heat of vaporization; q: surface air specific humidity from ERA5).
- Suppressing surface albedo feedback \rightarrow the greatest reduction in SAT difference between the Arctic and global average.

- Qualitative agreement between ERA5 and CESM2 LE: albedo & LR feedback are the top two main contributors to Arctic SAT/AA increase. Cloud and WV
- feedback: relatively weaker effects; less agreement between datasets; greater susceptibility to internal variability.

Fig. 2 ERA5 (up) & CESM2 (down) Planck (P), lapse rate (LR), water vapor (WV), albedo (A) & cloud (C) radiative feedbacks.

Fig. 3 SAT changes in the EBM with total feedback and individual feedbacks suppressed one at a time.

6. Summary

- Albedo and lapse rate feedbacks: positive and comparable (albedo feedback is the dominant contributor for all AA metrics).
- Cloud feedback has large uncertainties (strongly depends on the data used, the time periods considered and the AA metrics used).
- WV and cloud feedbacks are most heavily influenced by internal variability.
- An EBM, incorporating regional feedbacks & diffusivity from ERA5, is employed to establish a robust connection between the estimated regional feedbacks and their contribution to AA.