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The poles are special:
radiative-advective equilibrium

The polar caps are the only regions receiving more energy through
atmospheric transport than from solar heating
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Stands to reason that changes in energy transport might play an important role in polar climate change!



Things we think we know about Arctic Amplification

* Arctic Amplification (AA) is a highly seasonal phenomenon
» Sea ice loss and seasonal heat storage is a key reason

* Increased poleward moisture transport is a robust feature of global
warming

* Local positive radiative feedbacks in Arctic (including but not limited
to surface albedo feedback) contribute to AA

* Lapse rate feedback in the Arctic is positive but this is not a
mechanism — it’s a consequence of other mechanisms

» Feedbacks are not independent of each other and are coupled to
changes in circulation / heat transport

* Nature seems to be on the high end of our model-based AA
distribution



Things we think we know about Arctic Amplification (Taylor’s Version)

(€1) Positive local feedbacks (sea ice, o (C2) Strong stable atmospheric stratification restricts Legend
water vapor) amplify initial forcing m: convective exchange with the free troposphere and - =

in the Arctic than elsewhere. : K focuses warming near the surface.
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(C5) Activation of positive
local feedbacks by increased
poleward latent heat transport
drive additional warming.

(C4) Increased poleward latent heat transport
amplifies Arctic warming through the "water
vapor triple effect” latent heat release, greenhouse
effect of added moi , and cloud f on.

Taylor et al. (2021) Front. Earth Sci. https://doi.org/10.3389/feart.2021.758361
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Polar amplification in response to CO,- o
even the most primitive GCMs agree
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Manabe and Wetherald (1975) JAS https://doi.org/10.1175/1520-0469(1975)032<0003: TEODTC>2.0.CO;2



https://doi.org/10.1175/1520-0469(1975)032%3C0003:TEODTC%3E2.0.CO;2

- TOTAL 1RO Y

Polar amplification in response to CO2- : ..

ar

even the most primitive GCMs agree
7N gl v sisa 5o g

’ ""“ "... the tropospheric warming is most pronounced in the lower =~~~ l
/ troposphere in high latitudes. This large warming is associated - swew ~—

/ LAND fh s with the decrease in the area of snow (or ice) cover, which has a /

( . much larger albedo than the soil surface... the warming in high

Y

N -

- 2900y

T

V558 S T

latitudes is confined within a relatively shallow layer next to the «wowesrmwwen
Fro. 1. Diagram Wustrating the distrib TP P
s ” Cydlc cmniouity st i €AtH's - surface because the vertical mixing by turbulence is ~ 77,
suppressed in the stable layer of the troposphere in polar T
regions... In short, the effects of suppression of vertical mixing ——————*—"—"\

20— i \
TEMPERATURE 1591 why : \
_J i together those of snowmelt are responsible for the large N\ j_
5 —— U ANDA B = . . o ’ '.\l'
* warming in the polar region. R ‘
3 "":l' - B 7. o ) . : W w0 o o » » W0 0
| o . a, MSOE-DOERT GAINDEDIONn O 1D NAl meaR em
260} .,’,-/ perature (K) for the standard case (2) and of the increase in LATAUO
/ sonal mean temmperature (K) resuiting from the doabling of CO, F10. 12, Poleward transpoet of total encrgy (CpT 4+ K4-Le),
240l —_ o conceatration (b). Stipping ndicates a decrease in tempemture a., poleward transport of heat energy (Cp,T+¢+K), by, and pole-
0 & b 0 N » B0 ward transport of latent energy (Lr), c.

LARTUDE
Fic. 5. Zonal mean temperature at the Jowest prognostic bevel

{i.c., ~991 mb). Dots indicate the observed distribution of zopal
mean surface alr temperature (Oort and Rasmusson, 1971),

Manabe and Wetherald (1975) JAS https://doi.org/10.1175/1520-0469(1975)032<0003: TEODTC>2.0.C0O:2



https://doi.org/10.1175/1520-0469(1975)032%3C0003:TEODTC%3E2.0.CO;2

Seasonal structure of Arctic Amplification dominated
by sea ice loss and seasonal heat storage

Global model with seasonal cycle and realistic geography. Mixed layer ocean with no OHT, prognostic sea ice model

Seasonality of sea ice thickness in 1x and 4xCO,

Seasonal temperature anomaly
from 4xCO2 Manabe and Stouffer (1980) JGR https:/doi.org/10.1029/JC085iC10p05529
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Seasonal structure of Arctic Amplification dominated
by sea ice loss and seasonal heat storage

Global model with se ' The warming owing to the quadrupling of CO2 concentration... in high lel

latitudes... is generally larger and varies markedly with season, particularly in
the northern hemisphere. The warming is at a maximum in early winter and
is small in summer."

"Although the poleward retreat of highly reflective snow cover and sea ice is
mainly responsible for the large annual mean warming in high latitudes, the
change of the thermal insulation effect of sea ice strongly influences the
seasonal variation of the warming over the polar regions..."

“The large increase of the absorbed solar energy in late spring or early
summer results in the ... fall maximum in the warming of the mixed layer
ocean which, in turn, is followed by the maximum warming of the surface
atmospheric layer in early winter (i.e. November at the North Pole and January
at 70°N)... The CO2-induced delay in the growth of sea ice accounts for this

Seasonal temper: large winter warming of the atmosphere.”

from 4xCO2

Manabe and Stouffer (1980) JGR https://doi.org/10.1029/JC085iC10p05529
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Things that are less well known / agreed-upon

* Physical mechanisms and causality in links between AHT and Arctic
radiative feedbacks

* Role of synoptic-scale variability in AHT changes and their effects on
AA

* Almost everything related to ocean heat transport and ocean—sea ice
interaction



Ocean heat transport and Arctic
Amplification



Coupled models tend to predict increased OHT
Arctic Amplification

associated with ice loss and
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Holland and Bitz (2003) Clim. Dyn., https://doi.org/10.1007/s00382-003-0332-6
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Close connection between OHT changes and winter ice loss (more modern example)
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2xCO2 in a fully coupled model
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m DJF {vellow), JA (Blue), and the annual mean (black).
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But the causality is hard to disentangle

Comparing 2xCO2 to artificial sea ice darkening
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Bitz et al. (2006) JClim, https://doi.org/10.1175/iCLI3756.1
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OHT also influences AA indirectly by modifying other
feedbacks

Diagnose OHT changes from fully coupled model, e
impose them in a slab ocean model wd

Arctic surface
warming and
mid-tropospheric
cooling — a positive
gw.peron . ua  lapse rate feedback!
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* Orders of magnitude fewer
observations of the ocean’s interior

* Order of magnitude smaller spatial
scales required to resolve the basic
geostrophic turbulent flow

* Likely to be more surprises
emerging from high resolution
eddy-permitting models



Effects of
ocean model
resolution:

More realistic
heat transport
through Bering
Strait leads to
stronger AA
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Atmospheric heat transport and
Arctic amplification



Models disagree about changes in total AHT — but
agree that moisture transport goes up

Moisture transport is a driver of polar amplification...
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Figure 1. Zonal average changes in northward MSE flux
(PW) in (left) slab ocean models, (middle) the SRES A1B
scenario, and (right) the 20C3M scenario. Multi-model
means are in bold.

Hwang and Frierson (2010), https:/doi.org/10.1029/2010GL045440
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Figure 1. Changes in northward energy transports in PW
from 2001~2020 to 2081 ~2100 in the A2 Scenario: (a) atmo-
spheric cnergy transport, (b) moisture (solid) and DSE
(dashed) transport, and (c¢) oceanic energy transport.

Correction https://doi.org/10.1029/2011GL047604

Hwang, Frierson, and Kay (2011), https://doi.org/10.1029/2011GL048546

Effect is well described
by a moist diffusive
Energy Balance Model
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versus the actual changes in GCMs (in PW).
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AHT changes are anti-correlated with AA across models

AHT is a response to polar amplification...
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Disentangling causality in polar
amplification requires thinking
about spatial and temporal

structures of energy transports



Poleward heat transport: friend or foe of polar

ification?
C%m-%! precf?cts a Igecrease in heat transport across 702N with warming

Punchline:
Roughly 10 W/m2 decrease in winter-season Fuall NO
polar-cap convergence, consistent with the
relatively strong Arctic amplification in this model .
Ftrop 1 Not all heating
events are

So atmospheric dynamics are acting to
mitigate Arctic amplification, right?
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Do the climatic impacts of heat transport actually scale with ”
the total integral heating of the atmosphere? NTES- o

Cardinale and Rose (2023) GRL, https://doi.ora/10.1029/2022GL100834
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Efficiency of tropospheric energy flux
evﬁmg'cidea

1. There’s a surge of excess moist static energy into the Arctic polar cap
2. The air column becomes warmer and moister

= NTES Anomaly
w—— Frrop Anomly
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b X : : : o
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Timeseries of total tropospheric energy flux convergence, illustrating occasional surges of heating (single winter, from MERRA-2 data)

Cardinale and Rose (2022) J. Climate, https://doi.org/10.1175/JCLI-D-21-0852.1


https://doi.org/10.1175/JCLI-D-21-0852.1

Efficiency of tropospheric energy flux
evﬁmgtidea

1. There’s a surge of excess moist static energy into the Arctic polar cap’ -~ "'

2. The air column becomes warmer and moister
Then what? ... the excess must be disposed either up or

down!
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Efficiency is the fraction of the excess energy that goes down!
i.e., the ratio of anomalous net surface heat flux to anomalous energy source

Cardinale and Rose (2022) J. Climate, https://doi.org/10.1175/JCLI-D-21-0852.1
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Climatological efficiency
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We separate events into three bins based on efficiency: low, medium, and high
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And then look at composites of events for all three bins

Cardinale and Rose (2022) J. Climate, https://doi.org/10.1175/JCLI-D-21-0852.1
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Factors influencing efficiency from event composites
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Is efficiency changing?
YES, according to the MERRA-2 reanalysis*
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High-efficiency event frequency is increasing at the expense of low-efficiency events

* raw MERRA-2 data were de-trended prior to computing trends in event counts

Cardinale and Rose (2022) J. Climate, https://doi.org/10.1175/JCLI-D-21-0852.1
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What about the future?

Computing efficiency in climate model projections
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We use high-frequency output from the CESM Large Ensemble

to compare the recent historica
(a)

| period to a next-century scenario

We find a robust increase in efficiency of events in these warmer futures

Cardinale and Rose (2023) GRL, https://doi.ora/10.1029/2022GL100834
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Poleward heat transport: friend or foe of polar

ification?
C%m-%! predicts a Igecrease in heat transport across 702N with warming

We lose 10 W/m2 of heat transport Fuail

¢

of the energy per event

NTESA

How does this play out?

Cardinale and Rose (2023) GRL, https://doi.ora/10.1029/2022GL100834
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The increase in per-event efficiency more than compensates for the decreased
atmospheric heat transport

Cardinale and Rose (2023) GRL, https://doi.ora/10.1029/2022GL100834
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Arctic heat transport efficiency: summary

The surface heating impact of synoptic events can be quantified through an efficiency metric

High-efficiency events become more frequent with warming, both in reanalysis (MERRA-2) and a
model (CESM-LE)

* The primary mechanism seems to be reduced stratification, stronger turbulent coupling of
troposphere to surface

Increased efficiency more than compensates reduced total poleward energy transport in CESM-LE

Total poleward energy transport is the wrong diagnostic for understanding drivers of Arctic
Amplification

We need to look at synoptic timescales to understand the impact of atmospheric circulation on Arctic
energetics.

Caveat / future work: we looked at winter only. Informed by Lily Hahn’s work on impacts of seasonal
heating, it would be very interesting to look more closely at summer heat transport

Cardinale, Rose, Lang, and Donohoe (2021) J. Climate doi:10.1175/JCLI-D-20-0722.1
Cardinale and Rose (2022) J. Climate, https://doi.org/10.1175/JCLI-D-21-0852.1

Cardinale and Rose, GRL, https://doi.org/10.1029/2022GL100834



https://journals.ametsoc.org/view/journals/clim/34/11/JCLI-D-20-0722.1.xml
https://doi.org/10.1175/JCLI-D-21-0852.1
https://doi.org/10.1029/2022GL100834

Heat transport and amplification: some paths
forward

* Maybe there’s not much left to learn from looking at changes in
climatological energy budgets with warming

* A priority needs to be better understanding the causality between
heat transport, local feedbacks, and amplification

* Let’s do more coordinated, thoughtfully constructed mechanism denial
experiments.

* In the atmosphere, let’s think about synoptic timescales and the impact of
individual weather events.
* (Unfortunately) this means prioritizing making high-frequency diagnostics available!

* In the ocean, let’s continue to work on process understanding of ice-ocean
interactions with an eye toward the limitations of our coarse resolution
models.



