Role of Mean States on Atmospheric Responses to High-latitude thermal forcing and Polar Warming

Yung-Jen Chen¹, Yen-Ting Hwang¹, John C.H. Chiang², Yu-Chiao Liang¹

National Taiwan University¹ University of California, Berkeley²

 Previous studies has indicated that changes in polar ice extent can impact tropical sea surface temperatures, the positioning of the Inter-Tropical Convergence Zone (ITCZ), and the intensity and location of the Hadley cell.

 Previous studies has indicated that changes in polar ice extent can impact tropical sea surface temperatures, the positioning of the Inter-Tropical Convergence Zone (ITCZ), and the intensity and location of the Hadley cell.

The impact of polar heating on remote climate is sensitive to the altitude at which it is implemented.

2

The impact of polar heating on remote climate is sensitive to the altitude at which it is implemented.

2

The impact of polar heating on remote climate is sensitive to the altitude at which it is implemented.

2 (K

1. dynamic processes involved in this teleconnection

Perpetual Control Climates with Thermal Forcing

We impose a **polar warming forcing** in the mixed layer

Model &	• Aquaplanet version of the GFDL AM 2.1 coupled with a 200m mixed layer slab ocean
EXP. setting	 no seasonal cycle: the annual mean insolation is applied in the simulations.

Perpetual Control Climates with Thermal Forcing

We impose a **polar warming forcing** in the mixed layer in two perpetual control climates:

- 1. an austral-summer-like climate (SUM) :
 - clockwise cross-equatorial Hadley Cell
 - a weak subtropical jet in the SH
 - more unstable atmosphere

2. an austral-winter-like climate (WIN) :

- counter-clockwise cross-equatorial
 Hadley Cell

- a strong subtropical jet in the SH
- more stable atmosphere

Model &	 Aquaplanet version of the GFDL AM 2.1 coupled with a 200m mixed layer slab ocean
EXP. setting	 no seasonal cycle: the annual mean insolation is applied in the simulations.

Polar warming Responses

Contours: anomalous potential temperature (K)

Summer-like	Winter-like
Vertically-extending warming	Surface-trapped warming

4

Midlatitude Eddy Responses

• Definition of Eliassen–Palm flux (EP flux):

$$F = (F_{\phi}, F_p) = \left(-\overline{u'v'}, f \frac{\overline{v'\theta'}}{\partial_p \overline{\theta}}\right).$$

Contours: anomalous potential temperature (K)

Summer-like	Winter-like
Vertically-extending warming	Surface-trapped warming

4

• Definition of Eliassen–Palm flux (EP flux):

$$F = (F_{\phi}, F_p) = \left(-\overline{u'v'}, f \frac{\overline{v'\theta'}}{\partial_p \overline{\theta}}\right).$$

Contours: anomalous potential temperature (K) Vectors: anomalous EP fluxes (m²s⁻²) Shading: anomalous vertical EP flux (m²s⁻²)

Summer-like	Winter-like
Vertically-extending warming	Surface-trapped warming
Strong eddy responses ()	Weak eddy responses (-)

• Definition of Eliassen–Palm flux (EP flux):

$$F = (F_{\phi}, F_p) = \left(-\overline{u'v'}, f \frac{\overline{v'\theta'}}{\partial_p \overline{\theta}}\right).$$

• Decomposition of F_p :

(b) total -0.08 -0.064 -0.048 -0.032 -0.0 SUM	016 0 0.016 0.032 0.048 0.064 0.08 (c) total WIN
500	
700 - 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
850	850
60S 45S 30S	60S 45S 30S
Reference Vector	Reference Vector

Contours: anomalous potential temperature (K) Vectors: anomalous EP fluxes (m²s⁻²) Shading: anomalous vertical EP flux (m²s⁻²) $F_{\mathcal{D}}$

Summer-like	Winter-like
Vertically-extending warming	Surface-trapped warming
Strong eddy responses ()	Weak eddy responses (-)

• Definition of Eliassen–Palm flux (EP flux):

$$F = (F_{\phi}, F_p) = \left(-\overline{u'v'}, f\frac{\overline{v'\theta'}}{\partial_p\overline{\theta}}\right).$$

• Decomposition of F_p :

Summer-like	Winter-like
Vertically-extending warming	Surface-trapped warming
Decreased meridional temperature gradient ()	
Weak stability changes (~0)	
Strong eddy responses ()	Weak eddy responses (-)

• Definition of Eliassen–Palm flux (EP flux):

$$F = (F_{\phi}, F_p) = \left(-\overline{u'v'}, f\frac{\overline{v'\theta'}}{\partial_p\overline{\theta}}\right).$$

• Decomposition of F_p :

Summer-like	Winter-like
Vertically-extending	Surface-trapped
warming	warming
Decreased meridional	Decreased meridional
temperature gradient	temperature gradient
()	()
Weak stability changes	Decreased stability
(~0)	(++)
Strong eddy responses	Weak eddy responses
()	(-)

Vectors: anomalous EP flux (m²s⁻²) Shading: anomalous horizontal divergence of EP flux (m/s²) Red contour: anomalous zonally averaged zonal wind (Cl = 5 m/s)

 The decreased eddy activities in the lower levels would arise poleward eddy activity anomalies (vectors) in the upper levels, leading to anomalous eddy momentum flux divergence in the midlatitudes and convergence in the subtropics.

Circulation Responses

• The anomalous eddy momentum flux convergence would be balanced by Coriolis torque, resulting in the weakening of the Hadley cell.

Comparing with Energetics Perspective

In Kim et al., (2021):

upper-level \longrightarrow stronger atmospheric energy transport (δF_A) &

larger ITCZ latitude response (non-local response)

Comparing with Energetics Perspective

In Kim et al., (2021):

upper-level \longrightarrow stronger atmospheric energy transport (δF_A)

larger ITCZ latitude
 response
 (non-local response)

We offer a dynamical interpretation for the finding of Kim et al., (2021):

Vertically-extending warming (in summer-like case) cause stronger wave responses, leading to atmospheric energy transport anomaly and non-local effect.

Surface-trapped warming (in winter-like case) leads to weaker wave responses, resulting in weak atmospheric energy transport anomaly.

Midlatitude Wave Response in Doubled CO₂ Experiments

Apply our understanding to a set of more realistic climate change experiments:

CESM1 fully coupled model experiments Forcing: 2xCO2

 F_p

Shading: anomalous F_p and its decomposition **Contours:** anomalous F_p (m²s⁻²)

Midlatitude Wave Response in Doubled CO₂ Experiments

Apply our understanding to a set of more realistic climate change experiments:

CESM1 fully coupled model experiments Forcing: 2xCO2

 The doubled CO₂ experiments demonstrate that the stability term could contribute to the wave activity response, especially in winter.

Summary

- The climatological stability plays a role in determining the warming structure, and the structure of the warming, in turn, influences magnitude of eddy response.
- The magnitude of midlatitude wave responses affect the efficiency of teleconnection: the significant reduction of midlatitude wave in response to a vertical extending warming would effectively cause subtropical Hadley cell weakening.
- In the idealized WIN case, as well as during specific seasons and latitudes in response to sea ice loss, the surface warming induces greater atmospheric instability, thereby enhancing eddy generation. This effect offsets the impact associated with the reduced meridional temperature gradient.

Climate Dynamics and Global Change Lab.

ythwang@ntu.edu.tw d11229003@ntu.edu.tw