Sea ice sensitivity in the New Arctic
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Goal

Explore how the sea ice sensitivity to different processes is impacted by
the ice state, considering the transition from the thicker, perennial ice
(the ‘Old Arctic’) to thinner, seasonal ice (the ‘New Arctic’).
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Methods — MOSAIC Expedition

Leg 1: 19 Sep 2019 — 15 Dec 2019

Leg 3: 03 Mar 2020 — 06 Jun 2020
Leg 4: 06 Jun 2020 - 12 Aug 2020
Leg 5: 12 Aug 2020 — 12 Oct 2020
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Methods — Icepack sea ice model
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Methods — Single Column Modeling
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Methods — Validation
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Results

Ice thlckness (m) Net air-surface heat flux (W/m2)
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Results
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Results

Change in ice thickness (m) Change in net air-surface heat flux (W/m2)
-0.2 -0.1 0.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.1 0.2

* Oceanic heat flux
convergence:

1W/m? ] 7 W/m?

* Greatest impacts on
ice thickness (and
growth) are on
thickest ice. MOSAIC Y1 -

CHARLIE MYI 1

SHEBA MYI

* Greatest impacts on
air-surface heat flux MosAiC P
on thinnest ice.

Open Water

12-10 12-30 01-19 02-08 02-28 03-19 04-08 04-28 12-10 12-30 01-19 02-08 02-28 03-19 04-08 04-28



Results

Change in ice thickness (m) Change in net air-surface heat flux (W/m2)
-0.2 -0.1 0.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.1 0.2

e Oceanic heat flux

convergence:
1 W/m2 7 W/m2 CHARLIE MYI - . -
* Greatest impacts on |

ice thickness (and

growth) are on

thickest ice. ) -

* Greatest impacts on
air-surface heat flux MosAiC P

on thinnest ice. .
1 I .
|

12-10 12-30 01-19 02-08 02-28 03-19 04-08 04-28 12-10 12-30 01-19 02-08 02-28 03-19 04-08 04-28




Results

Change in ice thickness (m) Changie in net air-surface heat flux (W/m2)
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Conclusions

* The sea ice state impacts the modeled sensitivity. E.g., the thickness (and
growth) of thicker ice is more sensitive to changing oceanic heat flux.
Whereas thinner ice is more sensitive to changing snow thermal
conductivity.

* Which metric we use matters too. E.g., net air-surface heat flux sensitivity
has a different dependence on ice state than thickness.

* Single column modeling is a tool that can help investigate these sensitivities
for planning measurement campaigns and model tuning.

* Need more forcing datasets from different ice states (e.g., SHEBA, AIDJEX)
* Polar amplification studies should consider changes in the ice state.
Contact: dcsewall@ucar.edu
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